ﻻ يوجد ملخص باللغة العربية
By means of lattice-Boltzmann simulations the drag force on a sphere of radius R approaching a superhydrophobic striped wall has been investigated as a function of arbitrary separation h. Superhydrophobic (perfect-slip vs. no-slip) stripes are characterized by a texture period L and a fraction of the gas area $phi$. For very large values of h/R we recover the macroscopic formulae for a sphere moving towards a hydrophilic no-slip plane. For h/R=O(1) and smaller the drag force is smaller than predicted by classical theories for hydrophilic no-slip surfaces, but larger than expected for a sphere interacting with a uniform perfectly slipping wall. At a thinner gap, $hll R$ the force reduction compared to a classical result becomes more pronounced, and is maximized by increasing $phi$. In the limit of very small separations our simulation data are in quantitative agreement with an asymptotic equation, which relates a correction to a force for superhydrophobic slip to texture parameters. In addition, we examine the flow and pressure field and observe their oscillatory character in the transverse direction in the vicinity of the wall, which reflects the influence of the heterogeneity and anisotropy of the striped texture. Finally, we investigate the lateral force on the sphere, which is detectable in case of very small separations and is maximized by stripes with $phi=0.5$.
Hydrodynamic interactions in systems comprised of self-propelled particles, such as swimming microorganisms, and passive tracers have a significant impact on the tracer dynamics compared to the equivalent dry sample. However, such interactions are of
We study numerically the effect of thermal fluctuations and of variable fluid-substrate interactions on the spontaneous dewetting of thin liquid films. To this aim, we use a recently developed lattice Boltzmann method for thin liquid film flows, equi
The squirmer is a simple yet instructive model for microswimmers, which employs an effective slip velocity on the surface of a spherical swimmer to describe its self-propulsion. We solve the hydrodynamic flow problem with the lattice Boltzmann (LB) m
The viscous drag on a slender rod by a wall is important to many biological and industrial systems. This drag critically depends on the separation between the rod and the wall and can be approximated asymptotically in specific regimes, namely far fro
The effects of viscoelasticity on the dynamics and break-up of fluid threads in microfluidic T-junctions are investigated using numerical simulations of dilute polymer solutions at changing the Capillary number ($mbox {Ca}$), i.e. at changing the bal