ترغب بنشر مسار تعليمي؟ اضغط هنا

A characteristic oxygen abundance gradient in galaxy disks unveiled with CALIFA

125   0   0.0 ( 0 )
 نشر من قبل Sebastian F. Sanchez
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the largest and most homogeneous catalog of HII regions and associations compiled so far. The catalog comprises more than 7000 ionized regions, extracted from 306 galaxies observed by the CALIFA survey. We describe the procedures used to detect, select, and analyse the spectroscopic properties of these ionized regions. In the current study we focus on the characterization of the radial gradient of the oxygen abundance in the ionized gas, based on the study of the deprojected distribution of HII regions. We found that all galaxies without clear evidence of an interaction present a common gradient in the oxygen abundance, with a characteristic slope of alpha = -0.1 dex/re between 0.3 and 2 disk effective radii, and a scatter compatible with random fluctuations around this value, when the gradient is normalized to the disk effective radius. The slope is independent of morphology, incidence of bars, absolute magnitude or mass. Only those galaxies with evidence of interactions and/or clear merging systems present a significant shallower gradient, consistent with previous results. The majority of the 94 galaxies with H ii regions detected beyond 2 disk effective radii present a flattening in the oxygen abundance. The flattening is statistically significant. We cannot provide with a conclusive answer regarding the origin of this flattening. However, our results indicate that its origin is most probably related to the secular evolution of galaxies. Finally, we find a drop/truncation of the oxygen abundance in the inner regions for 26 of the galaxies. All of them are non-interacting, mostly unbarred, Sb/Sbc galaxies. This feature is associated with a central star-forming ring, which suggests that both features are produced by radial gas flows induced by resonance processes.



قيم البحث

اقرأ أيضاً

We construct maps of the oxygen abundance distribution across the disks of 88 galaxies using CALIFA data release 2 (DR2) spectra. The position of the center of a galaxy (coordinates on the plate) were also taken from the CALIFA DR2. The galaxy inclin ation, the position angle of the major axis, and the optical radius were determined from the analysis of the surface brightnesses in the SDSS $g$ and $r$ bands of the photometric maps of SDSS data release 9. We explore the global azimuthal abundance asymmetry in the disks of the CALIFA galaxies and the presence of a break in the radial oxygen abundance distribution. We found that there is no significant global azimuthal asymmetry for our sample of galaxies, i.e., the asymmetry is small, usually lower than 0.05 dex. The scatter in oxygen abundances around the abundance gradient has a comparable value, $lesssim 0.05$ dex. A significant (possibly dominant) fraction of the asymmetry can be attributed to the uncertainties in the geometrical parameters of these galaxies. There is evidence for a flattening of the radial abundance gradient in the central part of 18 galaxies. We also estimated the geometric parameters (coordinates of the center, the galaxy inclination and the position angle of the major axis) of our galaxies from the analysis of the abundance map. The photometry-map-based and the abundance-map-based geometrical parameters are relatively close to each other for the majority of the galaxies but the discrepancy is large for a few galaxies with a flat radial abundance gradient.
This paper aims at providing aperture corrections for emission lines in a sample of spiral galaxies from the Calar Alto Legacy Integral Field Area Survey (CALIFA) database. In particular, we explore the behavior of the log([OIII]5007/Hbeta)/([NII]658 3/Halpha) (O3N2) and log[NII]6583/Halpha (N2) flux ratios since they are closely connected to different empirical calibrations of the oxygen abundances in star forming galaxies. We compute median growth curves of Halpha, Halpha/Hbeta, O3N2 and N2 up to 2.5R_50 and 1.5 disk R_eff. The growth curves simulate the effect of observing galaxies through apertures of varying radii. The median growth curve of the Halpha/Hbeta ratio monotonically decreases from the center towards larger radii, showing for small apertures a maximum value of ~10% larger than the integrated one. The median growth curve of N2 shows a similar behavior, decreasing from the center towards larger radii. No strong dependence is seen with the inclination, morphological type and stellar mass for these growth curves. Finally, the median growth curve of O3N2 increases monotonically with radius. However, at small radii it shows systematically higher values for galaxies of earlier morphological types and for high stellar mass galaxies. Applying our aperture corrections to a sample of galaxies from the SDSS survey at 0.02<=z<=0.3 shows that the average difference between fiber-based and aperture corrected oxygen abundances, for different galaxy stellar mass and redshift ranges, reaches typically to ~11%, depending on the abundance calibration used. This average difference is found to be systematically biased, though still within the typical uncertainties of oxygen abundances derived from empirical calibrations. Caution must be exercised when using observations of galaxies for small radii (e.g. below 0.5R_eff) given the high dispersion shown around the median growth curves.
189 - Fabio Bresolin 2009
We have obtained deep multi-object optical spectra of 49 HII regions in the outer disk of the spiral galaxy M83 (=NGC 5236) with the FORS2 spectrograph at the Very Large Telescope. The targets span the range in galactocentric distance between 0.64 an d 2.64 times the R25 isophotal radius (5.4-22.3 kpc), and 31 of them are located at R>R25, thus belonging to the extreme outer disk of the galaxy, populated by UV complexes revealed recently by the GALEX satellite. In order to derive the nebular chemical abundances, we apply several diagnostics of the oxygen abundance, including R23, [NII]/[OII] and the [OIII]4363 auroral line, which was detected in four HII regions. We find that, while inwards of the optical edge the O/H ratio follows the radial gradient known from previous investigations, the outer abundance trend flattens out to an approximately constant value. The latter varies, according to the adopted diagnostic, between 12+log(O/H)=8.2 and 12+log(O/H)=8.6 (i.e. from approximately 1/3 the solar oxygen abundance to nearly the solar value). An abrupt discontinuity in the radial oxygen abundance trend is also detected near the optical edge of the disk. These results are tentatively linked to the flat gas surface density in the outskirts of the galaxy, the relatively unevolved state of the extended disk of M83, and the redistribution of chemically enriched gas following a past galaxy encounter.
We study the evolution of oxygen abundance radial gradients as a function of time for the Milky Way Galaxy obtained with our {sc Mulchem} chemical evolution model. We review the recent data of abundances for different objects observed in our Galactic disc. We analyse with our models the role of the growth of the stellar disc, as well as the effect of infall rate and star formation prescriptions, or the pre-enrichment of the infall gas, on the time evolution of the oxygen abundance radial distribution. We compute the radial gradient of abundances within the {sl disk}, and its corresponding evolution, taking into account the disk growth along time. We compare our predictions with the data compilation, showing a good agreement. Our models predict a very smooth evolution when the radial gradient is measured within the optical disc with a slight flattening of the gradient from $sim -0.057$,dex,kpc$^{-1}$ at $z=4$ until values around $sim -0.015$,dex,kpc$^{-1}$ at $z=1$ and basically the same gradient until the present, with small differences between models. Moreover, some models show a steepening at the last times, from $z=1$ until $z=0$ in agreement with data which give a variation of the gradient in a range from $-0.02$ to $-0.04$,de,kpc$^{-1}$ from $t=10$,Gyr until now. The gradient measured as a function of the normalized radius $R/R_{rm eff}$ is in good agreement with findings by CALIFA and MUSE, and its evolution with redshift falls within the error bars of cosmological simulations.
Context. The distribution of elements in galaxies forms an important diagnostic tool to characterize the systems formation and evolution. This tool is however complex to use in practice, as galaxies are subject to a range of simultaneous physical pro cesses active from pc to kpc scales. This renders observations of the full optical extent of galaxies down to sub-kpc scales essential. Aims. Using the WiFeS integral field spectrograph, we previously detected abrupt and localized variations in the gas-phase oxygen abundance of the spiral galaxy HCG91c. Here, we follow-up on these observations to map HCG91cs disk out to ~2Re at a resolution of 600pc, and characterize the non-radial variations of the gas-phase oxygen abundance in the system. Methods. We obtained deep MUSE observations of the target under ~0.6 arcsec seeing conditions. We perform both a spaxel-based and aperture-based analysis of the data to map the spatial variations of 12+log(O/H) across the disk of the galaxy. Results. We confirm the presence of rapid variations of the oxygen abundance across the entire extent of the galaxy previously detected with WiFeS, for all azimuths and radii. The variations can be separated in two categories: a) localized and associated with individual HII regions, and b) extended over kpc scales, and occurring at the boundaries of the spiral structures in the galaxy. Conclusions. Our MUSE observations suggest that the enrichment of the interstellar medium in HGC91c has proceeded preferentially along spiral structures, and less efficiently across them. Our dataset highlights the importance of distinguishing individual star-forming regions down to scales of a few 100pc when using integral field spectrographs to spatially resolve the distribution of oxygen abundances in a given system, and accurately characterize azimuthal variations and intrinsic scatter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا