ﻻ يوجد ملخص باللغة العربية
We have obtained deep multi-object optical spectra of 49 HII regions in the outer disk of the spiral galaxy M83 (=NGC 5236) with the FORS2 spectrograph at the Very Large Telescope. The targets span the range in galactocentric distance between 0.64 and 2.64 times the R25 isophotal radius (5.4-22.3 kpc), and 31 of them are located at R>R25, thus belonging to the extreme outer disk of the galaxy, populated by UV complexes revealed recently by the GALEX satellite. In order to derive the nebular chemical abundances, we apply several diagnostics of the oxygen abundance, including R23, [NII]/[OII] and the [OIII]4363 auroral line, which was detected in four HII regions. We find that, while inwards of the optical edge the O/H ratio follows the radial gradient known from previous investigations, the outer abundance trend flattens out to an approximately constant value. The latter varies, according to the adopted diagnostic, between 12+log(O/H)=8.2 and 12+log(O/H)=8.6 (i.e. from approximately 1/3 the solar oxygen abundance to nearly the solar value). An abrupt discontinuity in the radial oxygen abundance trend is also detected near the optical edge of the disk. These results are tentatively linked to the flat gas surface density in the outskirts of the galaxy, the relatively unevolved state of the extended disk of M83, and the redistribution of chemically enriched gas following a past galaxy encounter.
Using Hubble Space Telescope ACS/WFC data we present the photometry and spatial distribution of resolved stellar populations of four fields within the extended ultraviolet disk (XUV disk) of M83. These observations show a clumpy distribution of main-
We study the evolution of oxygen abundance radial gradients as a function of time for the Milky Way Galaxy obtained with our {sc Mulchem} chemical evolution model. We review the recent data of abundances for different objects observed in our Galactic
We examine the possible dependence of the radial oxygen abundance distribution on non-axisymmetrical structures (bar/spirals) and other macroscopic parameters such as the mass, the optical radius R25, the color g-r, and the surface brightness of the
The nature of the metallicity gradient inside the solar circle (R_GC < 8 kpc) is poorly understood, but studies of Cepheids and a small sample of open clusters suggest that it steepens in the inner disk. We investigate the metallicity gradient of the
Context. The distribution of elements in galaxies forms an important diagnostic tool to characterize the systems formation and evolution. This tool is however complex to use in practice, as galaxies are subject to a range of simultaneous physical pro