ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong plasmon reflection at nanometer-size gaps in monolayer graphene on SiC

105   0   0.0 ( 0 )
 نشر من قبل Alexey Kuzmenko
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We employ tip-enhanced infrared near-field microscopy to study the plasmonic properties of epitaxial quasi-free-standing monolayer graphene on silicon carbide. The near-field images reveal propagating graphene plasmons, as well as a strong plasmon reflection at gaps in the graphene layer, which appear at the steps between the SiC terraces. When the step height is around 1.5 nm, which is two orders of magnitude smaller than the plasmon wavelength, the reflection signal reaches 20% of its value at graphene edges, and it approaches 50% for step heights as small as 5 nm. This intriguing observation is corroborated by numerical simulations, and explained by the accumulation of a line charge at the graphene termination. The associated electromagnetic fields at the graphene termination decay within a few nanometers, thus preventing efficient plasmon transmission across nanoscale gaps. Our work suggests that plasmon propagation in graphene-based circuits can be tailored using extremely compact nanostructures, such as ultra-narrow gaps. It also demonstrates that tip-enhanced near-field microscopy is a powerful contactless tool to examine nanoscale defects in graphene.



قيم البحث

اقرأ أيضاً

At high magnetic fields, monolayer graphene hosts competing phases distinguished by their breaking of the approximate SU(4) isospin symmetry. Recent experiments have observed an even denominator fractional quantum Hall state thought to be associated with a transition in the underlying isospin order from a spin-singlet charge density wave at low magnetic fields to an antiferromagnet at high magnetic fields, implying that a similar transition must occur at charge neutrality. However, this transition does not generate contrast in typical electrical transport or thermodynamic measurements and no direct evidence for it has been reported, despite theoretical interest arising from its potentially unconventional nature. Here, we measure the transmission of ferromagnetic magnons through the two dimensional bulk of clean monolayer graphene. Using spin polarized fractional quantum Hall states as a benchmark, we find that magnon transmission is controlled by the detailed properties of the low-momentum spin waves in the intervening Hall fluid, which is highly density dependent. Remarkably, as the system is driven into the antiferromagnetic regime, robust magnon transmission is restored across a wide range of filling factors consistent with Pauli blocking of fractional quantum hall spin-wave excitations and their replacement by conventional ferromagnetic magnons confined to the minority graphene sublattice. Finally, using devices in which spin waves are launched directly into the insulating charge-neutral bulk, we directly detect the hidden phase transition between bulk insulating charge density wave and a canted antiferromagnetic phases at charge neutrality, completing the experimental map of broken-symmetry phases in monolayer graphene.
Graphene on silicon carbide (SiC) has proved to be highly successful in Hall conductance quantization for its homogeneity at the centimetre scale. Robust Josephson coupling has been measured in co-planar diffusive Al/monololayer graphene/Al junctions . Graphene on SiC substrates is a concrete candidate to provide scalability of hybrid Josephson graphene/superconductor devices, giving also promise of ballistic propagation.
The local density of optical states governs an emitters lifetime and quantum yield through the Purcell effect. It can be modified by a surface plasmon electromagnetic field, but such a field has a spatial extension limited to a few hundreds of nanome ters, which complicates the use of optical methods to spatially probe the emitter-plasmon coupling. Here we show that a combination of electron-based imaging, spectroscopies and photon-based correlation spectroscopy enables measurement of the Purcell effect with nanometer and nanosecond spatio-temporal resolutions. Due to the large variability of radiative lifetimes of emitters embedded in nanoparticles with inhomogeneous sizes we relied on a statistical approach to unambiguously probe the coupling between nitrogen-vacancy centers (NV^0) in nanodiamonds and surface plasmons in silver nanocubes. We quantified the Purcell effect by measuring the NV^0 excited state lifetimes in a large number of either isolated nanodiamonds or nanodiamond-nanocube dimers and demonstrated a statistically significant lifetime reduction for dimers.
We use angle-resolved photoemission spectroscopy to investigate the electronic structure of bilayer graphene at high n-doping and extreme displacement fields, created by intercalating epitaxial monolayer graphene on silicon carbide with magnesium to form quasi-freestanding bilayer graphene on magnesium-terminated silicon carbide. Angle-resolved photoemission spectroscopy reveals that upon magnesium intercalation, the single massless Dirac band of epitaxial monolayer graphene is transformed into the characteristic massive double-band Dirac spectrum of quasi-freestanding bilayer graphene. Analysis of the spectrum using a simple tight binding model indicates that magnesium intercalation results in an n-type doping of 2.1 $times$ 10$^{14}$ cm$^{-2}$, creates an extremely high displacement field of 2.6 V/nm, opening a considerable gap of 0.36 eV at the Dirac point. This is further confirmed by density-functional theory calculations for quasi-freestanding bilayer graphene on magnesium-terminated silicon carbide, which show a similar doping level, displacement field and bandgap. Finally, magnesium-intercalated samples are surprisingly robust to ambient conditions; no significant changes in the electronic structure are observed after 30 minutes exposure in air.
We show that graphene possesses a strong nonlinear optical response in the form of multi-plasmon absorption, with exciting implications in classical and quantum nonlinear optics. Specifically, we predict that graphene nano-ribbons can be used as satu rable absorbers with low saturation intensity in the far-infrared and terahertz spectrum. Moreover, we predict that two-plasmon absorption and extreme localization of plasmon fields in graphene nano-disks can lead to a plasmon blockade effect, in which a single quantized plasmon strongly suppresses the possibility of exciting a second plasmon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا