ﻻ يوجد ملخص باللغة العربية
We show a parallel repetition theorem for the entangled value $omega^*(G)$ of any two-player one-round game $G$ where the questions $(x,y) in mathcal{X}timesmathcal{Y}$ to Alice and Bob are drawn from a product distribution on $mathcal{X}timesmathcal{Y}$. We show that for the $k$-fold product $G^k$ of the game $G$ (which represents the game $G$ played in parallel $k$ times independently), $ omega^*(G^k) =left(1-(1-omega^*(G))^3right)^{Omegaleft(frac{k}{log(|mathcal{A}| cdot |mathcal{B}|)}right)} $, where $mathcal{A}$ and $mathcal{B}$ represent the sets from which the answers of Alice and Bob are drawn.
The behavior of games repeated in parallel, when played with quantumly entangled players, has received much attention in recent years. Quantum analogues of Razs classical parallel repetition theorem have been proved for many special classes of games.
We introduce a simple transformation on two-player nonlocal games, called anchoring, and prove an exponential-decay parallel repetition theorem for all anchored games in the setting of quantum entangled players. This transformation is inspired in par
We investigate the value of parallel repetition of one-round games with any number of players $kge 2$. It has been an open question whether an analogue of Razs Parallel Repetition Theorem holds for games with more than two players, i.e., whether the
We prove an explicit upper bound on the amount of entanglement required by any strategy in a two-player cooperative game with classical questions and quantum answers. Specifically, we show that every strategy for a game with n-bit questions and n-qub
We give a direct product theorem for the entanglement-assisted interactive quantum communication complexity of an $l$-player predicate $mathsf{V}$. In particular we show that for a distribution $p$ that is product across the input sets of the $l$ pla