ﻻ يوجد ملخص باللغة العربية
We consider global issues in minimal supergravity models where a single field inflaton potential emerges. In a particular case we reproduce the Starobinsky model and its description dual to a certain formulation of R+R^2 supergravity. For definiteness we confine our analysis to spaces at constant curvature, either vanishing or negative. Five distinct models arise, two flat models with respectively a quadratic and a quartic potential and three based on the SU(1,1)/U(1) space where its distinct isometries, elliptic, hyperbolic and parabolic are gauged. Fayet-Iliopoulos terms are introduced in a geometric way and they turn out to be a crucial ingredient in order to describe the de Sitter inflationary phase of the Starobinsky model.
It is proposed that a family of Jackiw-Teitelboim supergravites, recently discussed in connection with matrix models by Stanford and Witten, can be given a complete definition, to all orders in the topological expansion and beyond, in terms of a spec
We show how changes in unitarity-preserving boundary conditions allow continuous interpolation among the Hilbert spaces of quantum mechanics on topologically distinct manifolds. We present several examples, including a computation of entanglement ent
We discuss supergravity inflation in braneworld cosmology for the class of potentials $V(phi)=alpha phi^nrm{exp}(-beta^m phi^m)$ with $m=1,~2$. These minimal SUGRA models evade the $eta$ problem due to a broken shift symmetry and can easily accommoda
The minimal Starobinsky supergravity with the inflaton (scalaron) and the goldstino in a massive vector supermultiplet is coupled to the dilaton-axion chiral superfield with the no-scale Kahler potential and a superpotential. The Kachru-Kallosh-Linde
By using integral forms we derive the superspace action of D=3, N=1 supergravity as an integral on a supermanifold. The construction is based on target space picture changing operators, here playing the role of Poincare duals to the lower-dimensional