ﻻ يوجد ملخص باللغة العربية
Hoares logic is an axiomatic system of proving programs correct, which has been extended to be a separation logic to reason about mutable heap structure. We develop the most fundamental logical structure of strongest postcondition of Hoares logic in Peanos arithmetic $PA$. Let $pin L$ and $S$ be any while-program. The arithmetical definability of $textbf{N}$-computable function $f_S^{textbf{N}}$ leads to separate $S$ from $SP(p,S)$, which defines the strongest postcondition of $p$ and $S$ over $textbf{N}$, achieving an equivalent but more meaningful form in $PA$. From the reduction of Hoares logic to PA, together with well-defined underlying semantics, it follows that Hoares logic is sound and complete relative to the theory of $PA$, which is different from the relative completeness in the sense of Cook. Finally, we discuss two ways to extend computability from the standard structure to nonstandard models of $PA$.
We present a history of Hoares logic.
We provide a sound and relatively complete Hoare-like proof system for reasoning about partial correctness of recursive procedures in presence of local variables and the call-by-value parameter mechanism, and in which the correctness proofs are linea
We investigate the complexity consequences of adding pointer arithmetic to separation logic. Specifically, we study extensions of the points-to fragment of symbolic-heap separation logic with various forms of Presburger arithmetic constraints. Most
Weakly Aggregative Modal Logic (WAML) is a collection of disguised polyadic modal logics with n-ary modalities whose arguments are all the same. WAML has some interesting applications on epistemic logic and logic of games, so we study some basic mode
We propose a model of the substructural logic of Bunched Implications (BI) that is suitable for reasoning about quantum states. In our model, the separating conjunction of BI describes separable quantum states. We develop a program logic where pre- a