ترغب بنشر مسار تعليمي؟ اضغط هنا

A Quantum Interpretation of Bunched Logic for Quantum Separation Logic

206   0   0.0 ( 0 )
 نشر من قبل Li Zhou
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a model of the substructural logic of Bunched Implications (BI) that is suitable for reasoning about quantum states. In our model, the separating conjunction of BI describes separable quantum states. We develop a program logic where pre- and post-conditions are BI formulas describing quantum states -- the program logic can be seen as a counterpart of separation logic for imperative quantum programs. We exercise the logic for proving the security of quantum one-time pad and secret sharing, and we show how the program logic can be used to discover a flaw in Google Cirqs tutorial on the Variational Quantum Algorithm (VQA).



قيم البحث

اقرأ أيضاً

Most modern (classical) programming languages support recursion. Recursion has also been successfully applied to the design of several quantum algorithms and introduced in a couple of quantum programming languages. So, it can be expected that recursi on will become one of the fundamental paradigms of quantum programming. Several program logics have been developed for verification of non-recursive quantum programs. However, there are as yet no general methods for reasoning about recursive procedures in quantum computing. We fill the gap in this paper by presenting a logic for recursive quantum programs. This logic is an extension of quantum Hoare logic for quantum While-programs. The (relative) completeness of the logic is proved, and its effectiveness is shown by a running example: fixed-point Grovers search.
This volume contains the proceedings of the 17th International Conference on Quantum Physics and Logic (QPL 2020), which was held June 2-6, 2020. Quantum Physics and Logic is an annual conference that brings together researchers working on mathematic al foundations of quantum physics, quantum computing, and related areas, with a focus on structural perspectives and the use of logical tools, ordered algebraic and category-theoretic structures, formal languages, semantical methods, and other computer science techniques applied to the study of physical behavior in general. Work that applies structures and methods inspired by quantum theory to other fields (including computer science) is also welcome.
145 - Zhe Hou , Alwen Tiu 2016
Existing work on theorem proving for the assertion language of separation logic (SL) either focuses on abstract semantics which are not readily available in most applications of program verification, or on concrete models for which completeness is no t possible. An important element in concrete SL is the points-to predicate which denotes a singleton heap. SL with the points-to predicate has been shown to be non-recursively enumerable. In this paper, we develop a first-order SL, called FOASL, with an abstracted version of the points-to predicate. We prove that FOASL is sound and complete with respect to an abstract semantics, of which the standard SL semantics is an instance. We also show that some reasoning principles involving the points-to predicate can be approximated as FOASL theories, thus allowing our logic to be used for reasoning about concrete program verification problems. We give some example theories that are sound with respect to different variants of separation logics from the literature, including those that are incompatible with Reynoldss semantics. In the experiment we demonstrate our FOASL based theorem prover which is able to handle a large fragment of separation logic with heap semantics as well as non-standard semantics.
We develop local reasoning techniques for message passing concurrent programs based on ideas from separation logics and resource usage analysis. We extend processes with permission- resources and define a reduction semantics for this extended languag e. This provides a foundation for interpreting separation formulas for message-passing concurrency. We also define a sound proof system permitting us to infer satisfaction compositionally using local, separation-based reasoning.
135 - Christian Haack 2014
This paper presents a program logic for reasoning about multithreaded Java-like programs with dynamic thread creation, thread joining and reentrant object monitors. The logic is based on concurrent separation logic. It is the first detailed adaptatio n of concurrent separation logic to a multithreaded Java-like language. The program logic associates a unique static access permission with each heap location, ensuring exclusive write accesses and ruling out data races. Concurrent reads are supported through fractional permissions. Permissions can be transferred between threads upon thread starting, thread joining, initial monitor entrancies and final monitor exits. In order to distinguish between initial monitor entrancies and monitor reentrancies, auxiliary variables keep track of multisets of currently held monitors. Data abstraction and behavioral subtyping are facilitated through abstract predicates, which are also used to represent monitor invariants, preconditions for thread starting and postconditions for thread joining. Value-parametrized types allow to conveniently capture common strong global invariants, like static object ownership relations. The program logic is presented for a model language with Java-like classes and interfaces, the soundness of the program logic is proven, and a number of illustrative examples are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا