ﻻ يوجد ملخص باللغة العربية
We report on an all-sky search for periodic gravitational waves in the frequency range $mathrm{50-1000 Hz}$ with the first derivative of frequency in the range $-8.9 times 10^{-10}$ Hz/s to zero in two years of data collected during LIGOs fifth science run. Our results employ a Hough transform technique, introducing a $chi^2$ test and analysis of coincidences between the signal levels in years 1 and 2 of observations that offers a significant improvement in the product of strain sensitivity with compute cycles per data sample compared to previously published searches. Since our search yields no surviving candidates, we present results taking the form of frequency dependent, 95$%$ confidence upper limits on the strain amplitude $h_0$. The most stringent upper limit from year 1 is $1.0times 10^{-24}$ in the $mathrm{158.00-158.25 Hz}$ band. In year 2, the most stringent upper limit is $mathrm{8.9times10^{-25}}$ in the $mathrm{146.50-146.75 Hz}$ band. This improved detection pipeline, which is computationally efficient by at least two orders of magnitude better than our flagship Einstein$@$Home search, will be important for quick-look searches in the Advanced LIGO and Virgo detector era.
We report on a comprehensive all-sky search for periodic gravitational waves in the frequency band 100-1500 Hz and with a frequency time derivative in the range of $[-1.18, +1.00]times 10^{-8}$ Hz/s. Such a signal could be produced by a nearby spinni
We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is u
This paper reports on an unmodeled, all-sky search for gravitational waves from merging intermediate mass black hole binaries (IMBHB). The search was performed on data from the second joint science run of the LIGO and Virgo detectors (July 2009 - Oct
We report on an all-sky search for continuous gravitational waves in the frequency band 20-2000,Hz and with a frequency time derivative in the range of $[-1.0, +0.1]times10^{-8}$,Hz/s. Such a signal could be produced by a nearby, spinning and slightl
Isolated spinning neutron stars, asymmetric with respect to their rotation axis, are expected to be sources of continuous gravitational waves. The most sensitive searches for these sources are based on accurate matched filtering techniques, that assu