ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run

179   0   0.0 ( 0 )
 نشر من قبل Giulio Mazzolo
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper reports on an unmodeled, all-sky search for gravitational waves from merging intermediate mass black hole binaries (IMBHB). The search was performed on data from the second joint science run of the LIGO and Virgo detectors (July 2009 - October 2010) and was sensitive to IMBHBs with a range up to $sim 200$ Mpc, averaged over the possible sky positions and inclinations of the binaries with respect to the line of sight. No significant candidate was found. Upper limits on the coalescence-rate density of nonspinning IMBHBs with total masses between 100 and $450 mbox{M}_{odot}$ and mass ratios between $0.25$ and $1,$ were placed by combining this analysis with an analogous search performed on data from the first LIGO-Virgo joint science run (November 2005 - October 2007). The most stringent limit was set for systems consisting of two $88 mbox{M}_{odot}$ black holes and is equal to $0.12 mbox{Mpc}^{-3} mbox{Myr}^{-1}$ at the $90%$ confidence level. This paper also presents the first estimate, for the case of an unmodeled analysis, of the impact on the search range of IMBHB spin configurations: the visible volume for IMBHBs with nonspinning components is roughly doubled for a population of IMBHBs with spins aligned with the binarys orbital angular momentum and uniformly distributed in the dimensionless spin parameter up to 0.8, whereas an analogous population with antialigned spins decreases the visible volume by $sim 20%,$.



قيم البحث

اقرأ أيضاً

Gravitational wave astronomy has been firmly established with the detection of gravitational waves from the merger of ten stellar mass binary black holes and a neutron star binary. This paper reports on the all-sky search for gravitational waves from intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. The search uses three independent algorithms: two based on matched filtering of the data with waveform templates of gravitational wave signals from compact binaries, and a third, model-independent algorithm that employs no signal model for the incoming signal. No intermediate mass black hole binary event was detected in this search. Consequently, we place upper limits on the merger rate density for a family of intermediate mass black hole binaries. In particular, we choose sources with total masses $M=m_1+m_2in[120,800]$M$_odot$ and mass ratios $q = m_2/m_1 in[0.1,1.0]$. For the first time, this calculation is done using numerical relativity waveforms (which include higher modes) as models of the real emitted signal. We place a most stringent upper limit of $0.20$~Gpc$^{-3}$yr$^{-1}$ (in co-moving units at the 90% confidence level) for equal-mass binaries with individual masses $m_{1,2}=100$M$_odot$ and dimensionless spins $chi_{1,2}= 0.8$ aligned with the orbital angular momentum of the binary. This improves by a factor of $sim 5$ that reported after Advanced LIGOs first observing run.
The detection of an intermediate-mass black hole population ($10^2-10^6 M_odot$) will provide clues to their formation environments (e.g., disks of active galactic nuclei, globular clusters) and illuminate a potential pathway to produce supermassive black holes. Ground-based gravitational-wave detectors are sensitive to a subset of such mergers and have been used to detect one $142^{+28}_{-16} M_odot$ intermediate-mass black hole formation event. However, ground-based detector data contain numerous incoherent short duration noise transients that can mimic the gravitational-wave signals from merging intermediate-mass black holes, limiting the sensitivity of searches. Here we search for binary black hole mergers using a Bayesian-inspired ranking statistic which measures the coherence or incoherence of triggers in multiple-detector data. We use this statistic to identify candidate events with lab-frame total masses $gtrsim55 M_odot$ using data from LIGOs second observing run. Our analysis does not yield evidence for new intermediate-mass black holes. However, we find support for some stellar-mass binary black holes not reported in the first LIGO--Virgo gravitational-wave transient catalog, GWTC-1.
During their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals and GW151226, produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binaries (IMBHBs). The combined results from two independent search techniques were used in this study: the first employs a matched-filter algorithm that uses a bank of filters covering the GW signal parameter space, while the second is a generic search for GW transients (bursts). No GWs from IMBHBs were detected, therefore, we constrain the rate of several classes of IMBHB mergers. The most stringent limit is obtained for black holes of individual mass $100,M_odot$, with spins aligned with the binary orbital angular momentum. For such systems, the merger rate is constrained to be less than $0.93~mathrm{Gpc^{-3},yr}^{-1}$ in comoving units at the $90%$ confidence level, an improvement of nearly 2 orders of magnitude over previous upper limits.
We present results from a search for gravitational-wave bursts in the data collected by the LIGO and Virgo detectors between July 7, 2009 and October 20, 2010: data are analyzed when at least two of the three LIGO-Virgo detectors are in coincident op eration, with a total observation time of 207 days. The analysis searches for transients of duration < 1 s over the frequency band 64-5000 Hz, without other assumptions on the signal waveform, polarization, direction or occurrence time. All identified events are consistent with the expected accidental background. We set frequentist upper limits on the rate of gravitational-wave bursts by combining this search with the previous LIGO-Virgo search on the data collected between November 2005 and October 2007. The upper limit on the rate of strong gravitational-wave bursts at the Earth is 1.3 events per year at 90% confidence. We also present upper limits on source rate density per year and Mpc^3 for sample populations of standard-candle sources. As in the previous joint run, typical sensitivities of the search in terms of the root-sum-squared strain amplitude for these waveforms lie in the range 5 10^-22 Hz^-1/2 to 1 10^-20 Hz^-1/2. The combination of the two joint runs entails the most sensitive all-sky search for generic gravitational-wave bursts and synthesizes the results achieved by the initial generation of interferometric detectors.
We report results from a search for gravitational waves produced by perturbed intermediate mass black holes (IMBH) in data collected by LIGO and Virgo between 2005 and 2010. The search was sensitive to astrophysical sources that produced damped sinus oid gravitational wave signals, also known as ringdowns, with frequency $50le f_{0}/mathrm{Hz} le 2000$ and decay timescale $0.0001lesssim tau/mathrm{s} lesssim 0.1$ characteristic of those produced in mergers of IMBH pairs. No significant gravitational wave candidate was detected. We report upper limits on the astrophysical coalescence rates of IMBHs with total binary mass $50 le M/mathrm{M}_odot le 450$ and component mass ratios of either 1:1 or 4:1. For systems with total mass $100 le M/mathrm{M}_odot le 150$, we report a 90%-confidence upper limit on the rate of binary IMBH mergers with non-spinning and equal mass components of $6.9times10^{-8},$Mpc$^{-3}$yr$^{-1}$. We also report a rate upper limit for ringdown waveforms from perturbed IMBHs, radiating 1% of their mass as gravitational waves in the fundamental, $ell=m=2$, oscillation mode, that is nearly three orders of magnitude more stringent than previous results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا