ﻻ يوجد ملخص باللغة العربية
There is currently limited understanding of the role played by haemodynamic forces on the processes governing vascular development. One of many obstacles to be overcome is being able to measure those forces, at the required resolution level, on vessels only a few micrometres thick. In the current paper, we present an in silico method for the computation of the haemodynamic forces experienced by murine retinal vasculature (a widely used vascular development animal model) beyond what is measurable experimentally. Our results show that it is possible to reconstruct high-resolution three-dimensional geometrical models directly from samples of retinal vasculature and that the lattice-Boltzmann algorithm can be used to obtain accurate estimates of the haemodynamics in these domains. We generate flow models from samples obtained at postnatal days (P) 5 and 6. Our simulations show important differences between the flow patterns recovered in both cases, including observations of regression occurring in areas where wall shear stress gradients exist. We propose two possible mechanisms to account for the observed increase in velocity and wall shear stress between P5 and P6: i) the measured reduction in typical vessel diameter between both time points, ii) the reduction in network density triggered by the pruning process. The methodology developed herein is applicable to other biomedical domains where microvasculature can be imaged but experimental flow measurements are unavailable or difficult to obtain.
Computational Steering, the combination of a simulation back-end with a visualisation front-end, offers great possibilities to exploit and optimise scenarios in engineering applications. Due to its interactivity, it requires fast grid generation, sim
The work analyzes a one-dimensional viscoelastic model of blood vessel growth under nonlinear friction with surroundings, and provides numerical simulations for various growing cases. For the nonlinear differential equations, two sufficient condition
We present a method to estimate Gibbs distributions with textit{spatio-temporal} constraints on spike trains statistics. We apply this method to spike trains recorded from ganglion cells of the salamander retina, in response to natural movies. Our an
The pathogenesis of adolescent idiopathic scoliosis (AIS) remains poorly understood and biomechanical data are limited. A deeper insight into spinal loading could provide valuable information for the improvement of current treatment strategies. This
In the scenario of the narrow escape problem (NEP) a particle diffuses in a finite container and eventually leaves it through a small escape window in the otherwise impermeable boundary, once it arrives to this window and over-passes an entropic barr