ترغب بنشر مسار تعليمي؟ اضغط هنا

On groups with locally compact asymptotic cones

115   0   0.0 ( 0 )
 نشر من قبل Mark Sapir
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English
 تأليف Mark Sapir




اسأل ChatGPT حول البحث

We show how a recent result of Hrushovsky implies that if an asymptotic cone of a finitely generated group is locally compact, then the group is virtually nilpotent.



قيم البحث

اقرأ أيضاً

Suppose that $X=G/K$ is the quotient of a locally compact group by a closed subgroup. If $X$ is locally contractible and connected, we prove that $X$ is a manifold. If the $G$-action is faithful, then $G$ is a Lie group.
We give some new characterizations of exactness for locally compact second countable groups. In particular, we prove that a locally compact second countable group is exact if and only if it admits a topologically amenable action on a compact Hausdorf f space. This answers an open question by Anantharaman-Delaroche.
We announce various results concerning the structure of compactly generated simple locally compact groups. We introduce a local invariant, called the structure lattice, which consists of commensurability classes of compact subgroups with open normali ser, and show that its properties reflect the global structure of the ambient group.
We construct a finitely presented group with infinitely many non-homeomorphic asymptotic cones. We also show that the existence of cut points in asymptotic cones of finitely presented groups does, in general, depend on the choice of scaling constants and ultrafilters.
280 - Linus Kramer 2014
We prove continuity results for abstract epimorphisms of locally compact groups onto finitely generated groups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا