ﻻ يوجد ملخص باللغة العربية
We study the temporal, spatial and spectral evolution of the M1.8 flare, which occurred in NOAA AR 11195 (S17E31) on 22 April 2011, and explore the underlying physical processes during the precursors and their relation to the main phase. The study of the source morphology using the composite images in 131 {deg}A wavelength observed by the SDO/AIA and 6-14 keV revealed a multiloop system that destabilized systematically during the precursor and main phases. In contrast, HXR emission (20-50 keV) was absent during the precursor phase, appearing only from the onset of the impulsive phase in the form of foot-points of emitting loop/s. This study has also revealed the heated loop-top prior to the loop emission, although no accompanying foot-point sources were observed during the precursor phase. We estimate the flare plasma parameters viz. T, EM, power-law index, and photon turn-over energy by forward fitting RHESSI spectral observations. The energy released in the precursor phase was thermal and constituted ~1 per cent of the total energy released during the flare. The study of morphological evolution of the filament in conjunction with synthesized T and EM maps has been carried out which reveals (a) Partial filament eruption prior to the onset of the precursor emission, (b) Heated dense plasma over the polarity inversion line and in the vicinity of the slowly rising filament during the precursor phase. Based on the implications from multi-wavelength observations, we propose a scheme to unify the energy release during the precursor and main phase emissions in which, the precursor phase emission has been originated via conduction front formed due to the partial filament eruption. Next, the heated leftover S-shaped filament has undergone slow rise and heating due to magnetic reconnection and finally erupted to produce emission during the impulsive and gradual phases.
We investigate triggering, activation, and ejection of a solar eruptive prominence that occurred in a multi-polar flux system of active region NOAA 11548 on 2012 August 18 by analyzing data from AIA on board SDO, RHESSI, and EUVI/SECCHI on board STER
High resolution X-ray spectroscopy has revealed soft X-rays from high density plasma in Classical T-Tauri stars (CTTSs), probably arising from the accretion shock region. However, the mass accretion rates derived from the X-ray observations are consi
We present results from our analysis of Chandra X-ray Observatory, W. M. Keck Observatory, and Karl G. Jansky Very Large Array (VLA) images of the Crab Nebula that were contemporaneous with the gamma-ray flare of 2011 April. Despite hints in the X-ra
One of the most important products of solar flares are nonthermal energetic particles which may carry up to 50% energy releasing in the flaring processes. In radio observations, nonthermal particles generally manifest as spectral fine structures with
We present a multiwavelength analysis of the long duration flare observed on 15 April 2002 (soft X-ray peak time at 03:55 UT, SOL2002-04-15T03:55). This flare occurred on the disk (S15W01) in NOAA 9906 and was observed by a number of space instrument