ﻻ يوجد ملخص باللغة العربية
Contextuality lays at the heart of quantum mechanics. In the prevailing opinion it is considered as a signature of quantumness that classical theories lack. However, this assertion is only partially justified. Although contextuality is certainly true of quantum mechanics, it cannot be taken by itself as discriminating against classical theories. Here we consider a representative example of contextual behaviour, the so-called Mermin-Peres square, and present a discrete toy model of a bipartite system which reproduces the pattern of quantum predictions that leads to contradiction with the assumption of non-contextuality. This illustrates that quantum-like contextual effects have their analogues within classical models with epistemic constraints such as limited information gain and measurement disturbance.
A review is made of the field of contextuality in quantum mechanics. We study the historical emergence of the concept from philosophical and logical issues. We present and compare the main theoretical frameworks that have been derived. Finally, we fo
We study the explicit relation between violation of Bell inequalities and bipartite distillability of multi-qubit states. It has been shown that even though for $Nge 8$ there exist $N$-qubit bound entangled states which violates a Bell inequality [Ph
It is known that the number of different classical messages which can be communicated with a single use of a classical channel with zero probability of decoding error can sometimes be increased by using entanglement shared between sender and receiver
Randomness comes in two qualitatively different forms. Apparent randomness can result both from ignorance or lack of control of degrees of freedom in the system. In contrast, intrinsic randomness should not be ascribable to any such cause. While clas
A central result in the foundations of quantum mechanics is the Kochen-Specker theorem. In short, it states that quantum mechanics cannot be reconciled with classical models that are noncontextual for ideal measurements. The first explicit derivation