ﻻ يوجد ملخص باللغة العربية
Amorphous to crystalline phase transitions in phase change materials (PCM) can have strong influence on the actuation of microelectromechanical systems under the influence of Casimir forces. Indeed, the bifurcation curves of the stationary equilibrium points and the corresponding phase portraits of the actuation dynamics between gold and AIST PCM, where an increase of the Casimir force of up ~25% has been measured upon crystallization, show strong sensitivity to changes of the Casimir force as the stiffness of the actuating component decreases and/or the effective interaction area of the Casimir force increases, which can also lead to stiction. However, introduction of intrinsic energy dissipation (associated with a finite quality factor of the actuating system) can prevent stiction by driving the system to attenuated motion towards stable equilibrium depending on the PCM state and the system quality factor.
Quantum fluctuations give rise to van der Waals and Casimir forces that dominate the interaction between electrically neutral objects at sub-micron separations. Under the trend of miniaturization, such quantum electrodynamical effects are expected to
We demonstrate here a controllable variation in the Casimir force. Changes in the force of up to 20% at separations of ~100 nm between Au and AgInSbTe (AIST) surfaces were achieved upon crystallization of an amorphous sample of AIST. This material is
This work studies the influence of microstructures and crystalline defects on the superconductivity of MgB2, with the objective to improve its flux pinning. A MgB2 sample pellet that was hot isostatic pressed (HIPed) was found to have significantly i
The Born effective charges of component atoms and phonon spectra of a tetrahedrally coordinated crystalline ice are calculated from the first principles method based on density functional theory within the generalized gradient approximation with the
We propose that the driving force of an ultrafast crystalline-to-amorphous transition in phase-change memory alloys are strained bonds existing in the (metastable) crystalline phase. For the prototypical example of GST, we demonstrate that upon break