ترغب بنشر مسار تعليمي؟ اضغط هنا

Role of magnetic chirality in polarization flip upon commensurate-incommensurate magnetic phase transition in YMn$_{2}$O$_{5}$

99   0   0.0 ( 0 )
 نشر من قبل Shuichi Wakimoto
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have performed simultaneous measurements of magnetic chirality by using polarized neutrons and electric polarization along the b-axis of single crystals of YMn$^{4+}$(Mn$_{1-x}$Ga$_{x}$)$^{3+}$O$_{5}$ with $x=0.047$ and 0.12, in which nonmagnetic Ga-ions dilute Mn$^{3+}$ spins. The $x=0.047$ sample exhibits high-temperature incommensurate (HT-ICM), commensurate (CM), and low-temperature incommensurate (LT-ICM) magnetic phases in order of decreasing temperature, whereas the $x=0.12$ sample exhibits only HT-ICM and LT-ICM phases. Here, the CM and LT-ICM phases are ferroelectric and weak-ferroelectric, respectively. Measurements conducted under zero field heating after various field-cooling conditions evidence that the microscopic mechanisms of the spin-driven ferroelectricity in the CM and LT-ICM phases are different: the magnetic chirality of Mn$^{4+}$ cycloidal spins plays a dominant role in the LT-ICM phase, whereas the magnetic exchange striction by the Mn$^{4+}$-Mn$^{3+}$ chain plays a dominant role in the CM phase. The polarization of YMn$_{2}$O$_{5}$ flips upon CM to LT-ICM phase transition because the ferroelectricity driven by the magnetic chirality and the exchange striction provides opposite directions of polarization.



قيم البحث

اقرأ أيضاً

Detailed spin-wave spectra of magneto-electric LiNiPO4 have been measured by neutron scattering at low temperatures in the commensurate (C) antiferromagnetic (AF) phase with ordering temperature 20.8 K. An anomalous low-energy mode is observed at the modulation vector of the incommensurate (IC) AF phase appearing above the 20.8 K. A linear spin-wave model based on Heisenberg exchange couplings and single ion anisotropies accounts for all the observed spin-wave dispersions and intensities. Along the b axis an unusually strong next-nearest-neighbor AF coupling competes with the dominant nearest-neighbor AF exchange interaction and causes the IC structure.
We report thermodynamic properties, magnetic ground state, and microscopic magnetic model of the spin-1 frustrated antiferromaget Li$_{2}$NiW$_{2}$O$_{8}$ showing successive transitions at $T_{rm N1}simeq 18$ K and $T_{rm N2}simeq 12.5$ K in zero fie ld. Nuclear magnetic resonance and neutron diffraction reveal collinear and commensurate magnetic order with the propagation vector $mathbf k=(frac12,0,frac12)$ below $T_{rm N2}$. The ordered moment of 1.8 $mu_B$ at 1.5 K is directed along $[0.89(9),-0.10(5),-0.49(6)]$ and matches the magnetic easy axis of spin-1 Ni$^{2+}$ ions, which is determined by the scissor-like distortion of the NiO$_6$ octahedra. Incommensurate magnetic order, presumably of spin-density-wave type, is observed in the region between $T_{rm N2}$ and $T_{rm N1}$. Density-functional band-structure calculations put forward a three-dimensional spin lattice with spin-1 chains running along the $[01bar 1]$ direction and stacked on a spatially anisotropic triangular lattice in the $ab$ plane. We show that the collinear magnetic order in Li$_2$NiW$_2$O$_8$ is incompatible with the triangular lattice geometry and thus driven by a pronounced easy-axis single-ion anisotropy of Ni$^{2+}$.
The vanadates VO$_2$ and V$_2$O$_3$ are prototypical examples of strongly correlated materials that exhibit a metal-insulator transition. While the phase transitions in these materials have been studied extensively, there is a limited understanding o f how the properties of these materials are affected by the presence of defects and doping. In this study we investigate the impact of native point defects in the form of Frenkel defects on the structural, magnetic and electronic properties of VO$_2$ and V$_2$O$_3$, using first-principles calculations. In VO$_2$ the vanadium Frenkel pairs lead to a non-trivial insulating state. The unpaired vanadium interstitial bonds to a single dimer, which leads to a trimer that has one singlet state and one localized single-electron $S=1/2$ state. The unpaired broken dimer created by the vanadium vacancy also has a localized $S=1/2$ state. Thus, the insulating state is created by the singlet dimers, the trimer and the two localized $S=1/2$ states. Oxygen Frenkel pairs, on the other hand, lead to a metallic state in VO$_2$, but are expected to be present in much lower concentrations. In contrast, the Frenkel defects in V$_2$O$_3$ do not directly suppress the insulating character of the material. However, the disorder created by defects in V$_2$O$_3$ alters the local magnetic moments and in turn reduces the energy cost of a transition between the insulating and conducting phases of the material. We also find self-trapped small polarons in V$_2$O$_3$, which has implications for transport properties in the insulating phase.
134 - B.Liu , L.Wang , I.Radelytskyi 2019
Temperature and field-dependent magnetization $M(H,T)$ measurements and neutron scattering study of a single crystal CeSb$_2$ are presented. Several anomalies in the magnetization curves have been confirmed at low magnetic field, i.e., 15.6 K, 12 K, and 9.8 K. These three transitions are all metamagnetic transitions (MMT), which shift to lower temperatures as the magnetic field increases. The anomaly at 15.6 K has been suggested as paramagnetic (PM) to ferromagnetic (FM) phase transition. The anomaly located at around 12 K is antiferromagnetic-like transition, and this turning point will clearly split into two when the magnetic field $Hgeq0.2$ T. Neutron scattering study reveals that the low temperature ground state of CeSb$_2$ orders antiferromagnetically with commensurate propagation wave vectors $textbf{k}=(-1,pm1/6,0)$ and $textbf{k}=(pm1/6,-1,0)$, with Neel temperature $T_Nsim9.8$ K. This transition is of first-order, as shown in the hysteresis loop observed by the field cooled cooling (FCC) and field cooled warming (FCW) processes.
The compounds, PrCo9Si4 and NdCo9Si4, have been recently reported to exhibit first-order ferromagnetic transitions near 24 K. We have subjected this compound for further characterization by magnetization, heat-capacity and electrical resistivity meas urements at low temperatures in the presence of magnetic fields, particularly to probe magnetocaloric effect and magnetoresistance. The compounds are found to exhibit rather modest magnetocaloric effect at low temperatures peaking at Curie temperature, tracking the behavior of magnetoresistance. The magnetic transition does not appear to be first order in its character.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا