ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetization in electron- and Mn- doped SrTiO3

184   0   0.0 ( 0 )
 نشر من قبل D.D. Sarma
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Mn-doped SrTiO_3.0, when synthesized free of impurities, is a paramagnetic insulator with interesting dielectric properties. Since delocalized charge carriers are known to promote ferromagnetism in a large number of systems via diverse mechanisms, we have looked for the possibility of any intrinsic, spontaneous magnetization by simultaneous doping of Mn ions and electrons into SrTiO_3 via oxygen vacancies, thereby forming SrTi_(1-x)Mn_xO_(3-d), to the extent of making the doped system metallic. We find an absence of any enhancement of the magnetization in the metallic sample when compared with a similarly prepared Mn doped, however, insulating sample. Our results, thus, are not in agreement with a recent observation of a weak ferromagnetism in metallic Mn doped SrTiO_3 system.



قيم البحث

اقرأ أيضاً

The diversity of various manganese types and its complexes in the Mn-doped ${rm A^{III}B^V}$ semiconductor structures leads to a number of intriguing phenomena. Here we show that the interplay between the ordinary substitutional Mn acceptors and inte rstitial Mn donors as well as donor-acceptor dimers could result in a reversal of electron magnetization. In our all-optical scheme the impurity-to-band excitation via the Mn dimers results in direct orientation of the ionized Mn-donor $d$ shell. A photoexcited electron is then captured by the interstitial Mn and the electron spin becomes parallel to the optically oriented $d$ shell. That produces, in the low excitation regime, the spin-reversal electron magnetization. As the excitation intensity increases the capture by donors is saturated and the polarization of delocalized electrons restores the normal average spin in accordance with the selection rules. A possibility of the experimental observation of the electron spin reversal by means of polarized photoluminescence is discussed.
We report a surprisingly long spin relaxation time of electrons in Mn-doped p-GaAs. The spin relaxation time scales with the optical pumping and increases from 12 ns in the dark to 160 ns upon saturation. This behavior is associated with the differen ce in spin relaxation rates of electrons precessing in the fluctuating fields of ionized or neutral Mn acceptors, respectively. For the latter the antiferromagnetic exchange interaction between a Mn ion and a bound hole results in a partial compensation of these fluctuating fields, leading to the enhanced spin memory.
We study 1 or 2 neighboring Mn impurities, as well as complexes of 1 Mn and 1 or 2 Mg ions in a 64 atoms supercell of GaN by means of density functional calculations. Taking into account the electron correlation in the local spin density approximatio n with explicit correction of the Hubbard term (the LSDA+U method) and full lattice relaxation we determine the nearest neighbor exchange J for a pair of Mn impurities. We find J to be ferromagnetic and of the order of about 18 meV in the Hamiltonian H=-2*J1*J2. That J is only weakly influenced by the U parameter (varying between 2 and 8 eV) and by the lattice relaxation. From a detailed analysis of the magnetization density distribution we get hints for a ferromagnetic super-exchange mechanism. Also the Mn valence was found to be 3+ without any doubt in the absence of co-doping with Mg. Co-doping with Mg leads to a valence change to 4+ for 1 Mg and to 5+ for 2 Mg. We show that the valence change can already be concluded from a careful analysis of the density of states of GaN doped with Mn without any Mg.
180 - G. Y. Gao , Z. B. Yang , W. Huang 2013
Epitaxial Mn-doped BiFeO3 (MBFO) thin films were grown on GaAs (001) substrate with SrTiO3 (STO) buffer layer by pulsed laser deposition. X-ray diffraction results demonstrate that the films show pure (00l) orientation, and MBFO(100)//STO(100), where as STO (100)//GaAs (110). Piezoresponse force microscopy images and polarization versus electric field loops indicate that the MBFO films grown on GaAs have an effective ferroelectric switching. The MBFO films exhibit good ferroelectric behavior (2Pr ~ 92 {mu}C/cm2 and 2EC ~ 372 kV/cm). Ferromagnetic property with saturated magnetization of 6.5 emu/cm3 and coercive field of about 123 Oe is also found in the heterostructure at room temperature.
Conversion of spin to charge current was observed in SrTiO3 doped with Nd (Nd:STO), which exhibited a metallic behavior even with low concentration doping. The obvious variation of DC voltages for Py/Nd:STO, obtained by inverting the spin diffusion d irection, demonstrated that the detected signals contained the contribution from the inverse spin Hall effect (ISHE) induced by the spin dependent scattering from Nd impurities with strong spin-orbit interaction. The DC voltages of the ISHE for Nd:STO were measured at different microwave frequency and power, which revealed that spin currents were successfully injected into doped STO layer by spin pumping. The linear relation between the ISHE resistivity and the resistivity induced by impurities implied that the skew scattering was the dominant contribution in this case, and the spin Hall angle was estimated to be 0.17%. This work demonstrated that extrinsic spin dependent scattering in oxides can be used in spintroics besides that in heavy elements doped metals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا