ﻻ يوجد ملخص باللغة العربية
We study the shapes of the implied volatility when the underlying distribution has an atom at zero and analyse the impact of a mass at zero on at-the-money implied volatility and the overall level of the smile. We further show that the behaviour at small strikes is uniquely determined by the mass of the atom up to high asymptotic order, under mild assumptions on the remaining distribution on the positive real line. We investigate the structural difference with the no-mass-at-zero case, showing how one can--theoretically--distinguish between mass at the origin and a heavy-left-tailed distribution. We numerically test our model-free results in stochastic models with absorption at the boundary, such as the CEV process, and in jump-to-default models. Note that while Lees moment formula tells that implied variance is at most asymptotically linear in log-strike, other celebrated results for exact smile asymptotics such as Benaim and Friz (09) or Gulisashvili (10) do not apply in this setting--essentially due to the breakdown of Put-Call duality.
This paper presents how to apply the stochastic collocation technique to assets that can not move below a boundary. It shows that the polynomial collocation towards a lognormal distribution does not work well. Then, the potentials issues of the relat
We consider option pricing using a discrete-time Markov switching stochastic volatility with co-jump model, which can model volatility clustering and varying mean-reversion speeds of volatility. For pricing European options, we develop a computationa
The Heston stochastic volatility model is a standard model for valuing financial derivatives, since it can be calibrated using semi-analytical formulas and captures the most basic structure of the market for financial derivatives with simple structur
We derive a backward and forward nonlinear PDEs that govern the implied volatility of a contingent claim whenever the latter is well-defined. This would include at least any contingent claim written on a positive stock price whose payoff at a possibl
In informationally efficient financial markets, option prices and this implied volatility should immediately be adjusted to new information that arrives along with a jump in underlyings return, whereas gradual changes in implied volatility would indi