ﻻ يوجد ملخص باللغة العربية
Let X be an analytic vector field on a real or complex 2-manifold, and K a compact set of zeros of X whose fixed point index is not zero. Let A denote the Lie algebra of analytic vector fields Y on M such that at every point of M the values of X and [X,Y] are linearly dependent. Then the vector fields in A have a common zero in K. Application: Let G be a connected Lie group having a 1-dimensional normal subgroup. Then every action of G on M has a fixed point.
On a real ($mathbb F=mathbb R$) or complex ($mathbb F=mathbb C$) analytic connected 2-manifold $M$ with empty boundary consider two vector fields $X,Y$. We say that $Y$ {it tracks} $X$ if $[Y,X]=fX$ for some continuous function $fcolon Mrightarrowmat
Assume M is a 3-dimensional real manifold without boundary, A is an abelian Lie algebra of analytic vector fields on M, and X is an element of A. The following result is proved: If K is a locally maximal compact set of zeroes of X and the Poincare-
We show that the category of vector fields on a geometric stack has the structure of a Lie 2-algebra. This proves a conjecture of R.~Hepworth. The construction uses a Lie groupoid that presents the geometric stack. We show that the category of vector
We prove that the space of coinvariants of functions on an affine variety by a Lie algebra of vector fields whose flow generates finitely many leaves is finite-dimensional. Cases of the theorem include Poisson (or more generally Jacobi) varieties wit
We give an exposition of the theory of invariant manifolds around a fixed point, in the case of time-discrete, analytic dynamical systems over a complete ultrametric field K. Typically, we consider an analytic manifold M modelled on an ultrametric