ﻻ يوجد ملخص باللغة العربية
We prove that the space of coinvariants of functions on an affine variety by a Lie algebra of vector fields whose flow generates finitely many leaves is finite-dimensional. Cases of the theorem include Poisson (or more generally Jacobi) varieties with finitely many symplectic leaves under Hamiltonian flow, complete intersections in Calabi-Yau varieties with isolated singularities under the flow of incompressible vector fields, quotients of Calabi-Yau varieties by finite volume-preserving groups under the incompressible vector fields, and arbitrary varieties with isolated singularities under the flow of all vector fields. We compute this quotient explicitly in many of these cases. The proofs involve constructing a natural D-module representing the invariants under the flow of the vector fields, which we prove is holonomic if it has finitely many leaves (and whose holonomicity we study in more detail). We give many counterexamples to naive generalizations of our results. These examples have been a source of motivation for us.
We show that the category of vector fields on a geometric stack has the structure of a Lie 2-algebra. This proves a conjecture of R.~Hepworth. The construction uses a Lie groupoid that presents the geometric stack. We show that the category of vector
The vector space of holomorphic polyvector fields on any complex manifold has a natural Gerstenhaber algebra structure. In this paper, we study BV operators of the Gerstenhaber algebras of holomorphic polyvector fields on smooth compact toric varieti
Assume M is a 3-dimensional real manifold without boundary, A is an abelian Lie algebra of analytic vector fields on M, and X is an element of A. The following result is proved: If K is a locally maximal compact set of zeroes of X and the Poincare-
The present paper is devoted to the description of rigid solvable Leibniz algebras. In particular, we prove that solvable Leibniz algebras under some conditions on the nilradical are rigid and we describe four-dimensional solvable Leibniz algebras wi
We study vector bundles on flag varieties over an algebraically closed field $k$. In the first part, we suppose $G=G_k(d,n)$ $(2le dleq n-d)$ to be the Grassmannian manifold parameterizing linear subspaces of dimension $d$ in $k^n$, where $k$ is an a