ﻻ يوجد ملخص باللغة العربية
We study the effects of different descriptions of the solar surface convection on the eigenfrequencies of p-modes. 1-D evolution calculations of the whole Sun and 3-D hydrodynamic and magnetohydrodynamic simulations of the current surface are performed. These calculations rely on realistic physics. Averaged stratifications of the 3-D simulations are introduced in the 1-D solar evolution or in the structure models. The eigenfrequencies obtained are compared to those of 1-D models relying on the usual phenomenologies of convection and to observations of the MDI instrument aboard SoHO. We also investigate how the magnetic activity could change the eigenfrequencies and the solar radius, assuming that, 3 Mm below the surface, the upgoing plasma advects a 1.2 kG horizontal field. All models and observed eigenfrequencies are fairly close below 3 mHz. Above 3 mHz the eigenfrequencies of the phenomenological convection models are above the observed eigenfrequencies. The frequencies of the models based on the 3-D simulations are slightly below the observed frequencies. Their maximum deviation is ~ 3 mu Hz at 3 mHz but drops below 1 mu Hz at 4 mHz. Replacing the hydrodynamic by the magnetohydrodynamic simulation increases the eigenfrequencies. The shift is negligible below 2.2 mHz and then increases linearly with frequency to reach ~ 1.7 mu Hz at 4 mHz. The impact of the simulated activity is a 14 milliarcsecond shrinking of the solar layers near the optical depth unity.
The space-borne missions have provided a wealth of highly accurate data. However, our inability to properly model the upper-most region of solar-like stars prevents us from making the best of these observations. This problem is called surface effect
Solar activity and helioseismology show the limitation of the standard solar model and call for the inclusion of dynamical processes in both convective and radiative zones. We concentrate here on the radiative zone and first show the sensitivity of b
Several works have reported changes of the Suns subsurface stratification inferred from f-mode or p-mode observations. Recently a non-homologous variation of the subsurface layers with depth and time has been deduced from f-modes. Progress on this im
We perform 2D, fully compressible, time-implicit simulations of convection in a solar-like model with the MUSIC code. Our main motivation is to explore the impact of a common tactic adopted in numerical simulations of convection that use realistic st
It is widely reported that the power spectra of magnetic field and velocity fluctuations in the solar wind have power law scalings with inertial-range spectral indices of -5/3 and -3/2 respectively. Studies of solar wind turbulence have repeatedly de