ﻻ يوجد ملخص باللغة العربية
Solar activity and helioseismology show the limitation of the standard solar model and call for the inclusion of dynamical processes in both convective and radiative zones. We concentrate here on the radiative zone and first show the sensitivity of boron neutrinos to the microscopic physics included in solar models. We confront the neutrino predictions of the seismic model to all the detected neutrino fluxes. Then we compute new models of the Sun including a detailed transport of angular momentum and chemicals due to internal rotation that includes meridional circulation and shear induced turbulence. We use two stellar evolution codes: CESAM and STAREVOL to estimate the different terms. We follow three temporal evolutions of the internal rotation differing by their initial conditions: very slow, moderate and fast rotation, with magnetic braking at the arrival on the main sequence for the last two. We find that the meridional velocity in the present solar radiative zone is extremely small in comparison with those of the convective zone, smaller than 10^-6 cm/s instead of m/s. All models lead to a radial differential rotation profile but with a significantly different contrast. We compare these profiles to the presumed solar internal rotation and show that if meridional circulation and shear turbulence were the only mechanisms transporting angular momentum within the Sun, a rather slow rotation in the young Sun is favored. The transport by rotation slightly influence the sound speed profile but its potential impact on the chemicals in the transition region between radiation and convective zones. This work pushes us to pursue the inclusion of the other dynamical processes to better reproduce the present observable and to describe the young active Sun. We also need to get a better knowledge of solar gravity mode splittings to use their constraints.
Lithium abundance A(Li) and surface rotation are good diagnostic tools to probe the internal mixing and angular momentum transfer in stars. We explore the relation between surface rotation, A(Li) and age in a sample of seismic solar-analogue (SA) sta
Finding solar-analog stars with fundamental properties as close as possible to the Sun and studying the characteristics of their surface magnetic activity is a very promising way to understand the solar variability and its associated dynamo process.
Solar-analog stars provide an excellent opportunity to study the Suns evolution, i.e. the changes with time in stellar structure, activity, or rotation for solar-like stars. The unparalleled photometric data from the NASA space telescope Kepler allow
We present our latest results on the solar-stellar connection by studying 18 solar analogs that we identified among the Kepler seismic sample (Salabert et al., 2016a). We measured their magnetic activity properties using observations collected by the