ترغب بنشر مسار تعليمي؟ اضغط هنا

Separation of antiferromagnetism and high-temperature superconductivity in Ca$_{1-x}$La$_x$Fe$_2$As$_2$ under pressure

157   0   0.0 ( 0 )
 نشر من قبل Johnpierre Paglione
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the effect of applied pressures on magnetic and superconducting order in single crystals of the aliovalent La-doped iron pnictide material Ca$_{1-x}$La$_{x}$Fe$_{2}$As$_{2}$. Using electrical transport, elastic neutron scattering and resonant tunnel diode oscillator measurements on samples under both quasi-hydrostatic and hydrostatic pressure conditions, we report a series of phase diagrams spanning the range of substitution concentrations for both antiferromagnetic and superconducting ground states that include pressure-tuning through the antiferromagnetic (AFM) quantum critical point. Our results indicate that the observed superconducting phase with maximum transition temperature of $T_{c}$=47 K is intrinsic to these materials, appearing only upon suppression of magnetic order by pressure tuning through the AFM critical point. In contrast to all other intermetallic iron-pnictide superconductors with the ThCr$_2$Si$_2$ structure, this superconducting phase appears to exist only exclusively from the antiferromagnetic phase in a manner similar to the oxygen- and fluorine-based iron-pnictide superconductors with the highest transition temperatures reported to date. The unusual dichotomy between lower-$T_{c}$ systems with coexistent superconductivity and magnetism and the tendency for the highest-$T_{c}$ systems to show non-coexistence provides an important insight into the distinct transition temperature limits in different members of the iron-based superconductor family.



قيم البحث

اقرأ أيضاً

We report measurements of the pressure dependence of the superconducting transition temperature T_c in single crystal samples of the rare-earth doped superconductor Ca$_{0.73}$La$_{0.27}$Fe$_2$As$_2$. We track T_c with two techniques, via in-plane re sistivity measurements and with a resonant tunnel diode oscillator circuit which is sensitive to the skin depth. We show that initially T_c rises steeply with pressure, forming a superconducting dome with a maximum T_c of ~44 K at 20 kbar. We discuss this observation in the context of other electron-doped iron pnictide superconductors, and conclude that the application of pressure offers an independent way to tune T_c in this system.
The effect of hydrostatic pressure and partial Na substitution on the normal-state properties and the superconducting transition temperature ($T_c$) of K$_{1-x}$Na$_x$Fe$_2$As$_2$ single crystals were investigated. It was found that a partial Na subs titution leads to a deviation from the standard $T^2$ Fermi-liquid behavior in the temperature dependence of the normal-state resistivity. It was demonstrated that non-Fermi liquid like behavior of the resistivity for K$_{1-x}$Na$_{x}$Fe$_2$As$_2$ and some KFe$_2$As$_2$ samples can be explained by disorder effect in the multiband system with rather different quasiparticle effective masses. Concerning the superconducting state our data support the presence of a shallow minimum around 2 GPa in the pressure dependence of $T_c$ for stoichiometric KFe$_2$As$_2$. The analysis of $T_c$ in the K$_{1-x}$Na$_{x}$Fe$_2$As$_2$ at pressures below 1.5 GPa showed, that the reduction of $T_c$ with Na substitution follows the Abrikosov-Gorkov law with the critical temperature $T_{c0}$ of the clean system (without pair-breaking) which linearly depends on the pressure. Our observations, also, suggest that $T_c$ of K$_{1-x}$Na$_x$Fe$_2$As$_2$ is nearly independent of the lattice compression produced by the Na substitution. Further, we theoretically analyzed the behavior of the band structure under pressure within the generalized gradient approximation (GGA). A qualitative agreement between the calculated and the recently in de Haas-van Alphen experiments [T. Terashima et al., Phys.Rev.B89, 134520(2014)] measured pressure dependencies of the Fermi-surface cross-sections has been found. These calculations, also, indicate that the observed minimum around 2~GPa in the pressure dependence of $T_c$ may occur without a change of the pairing symmetry.
241 - R. H. Liu , G. Wu , H. Chen 2008
We prepared the samples K$_{1-x}$Ln$_{x}$Fe$_2$As$_2$ (Ln=Sm, Nd and La) with ThCr$_2$Si$_2$-type structure. These samples were characterized by X-ray diffraction, resistivity, susceptibility and thermoelectric power (TEP). Substitution of Ln (Ln=La, Nd and Sm) for K in K$_{1-x}$Ln$_{x}$Fe$_2$As$_2$ system raises the superconducting transition temperature to 34-36 K. The TEP measurements indicate that the TEP of K$_{1-x}$Ln$_{x}$Fe$_2$As$_2$ is positive, being similar to the case of the Ba$_{1-x}$K$_{x}$Fe$_2$As$_2$ system with p-type carrier. In the K$_{1-x}$Ln$_{x}$Fe$_2$As$_2$ system, the superconducting $KFe_2As_2$ with $T_csim 3$ K is the parent compound, and no structural and spin-density wave instabilities exist in this system.
336 - J. Q. Ma , X. G. Luo , P. Cheng 2014
We measured the in-plane resistivity anisotropy in the underdoped Ca$_{1-x}$Na$_x$Fe$_2$As$_2$ single crystals. The anisotropy (indicated by $rho_{rm b} - rho_{rm a}$) appears below a temperature well above magnetic transition temperature $T_{rm N}$, being positive ($rho_{rm b} - rho_{rm a} > 0$) as $xleq$ 0.14. With increasing the doping level to $x$ = 0.19, an intersection between $rho_{rm b}$ and $rho_{rm a}$ is observed upon cooling, with $rho_{rm b} - rho_{rm a} < 0$ at low-temperature deep inside a magnetically ordered state, while $rho_{rm b} - rho_{rm a}> 0$ at high temperature. Subsequently, further increase of hole concentration leads to a negative anisotropy $rho_{rm b} - rho_{rm a} < 0$ in the whole temperature range. These results manifest that the anisotropic behavior of resistivity in the magnetically ordered state depends strongly on the competition of the contributions from different mechanisms, and the competition between the two contributions results in a complicated evolution of the anisotropy of in-plane resistivity with doping level.
Using electronic Raman spectroscopy, we report direct measurements of charge nematic fluctuations in the tetragonal phase of strain-free Ba(Fe$_{1-x}$Co$_{x})_{2}$As$_{2}$ single crystals. The strong enhancement of the Raman response at low temperatu res unveils an underlying charge nematic state that extends to superconducting compositions and which has hitherto remained unnoticed. Comparison between the extracted charge nematic susceptibility and the elastic modulus allows us to disentangle the charge contribution to the nematic instability, and to show that charge nematic fluctuations are weakly coupled to the lattice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا