ﻻ يوجد ملخص باللغة العربية
General one-loop integrals with arbitrary mass and kinematical parameters in $d$-dimensional space-time are studied. By using Bernstein theorem, a recursion relation is obtained which connects $(n+1)$-point to $n$-point functions. In solving this recursion relation, we have shown that one-loop integrals are expressed by a newly defined hypergeometric function, which is a special case of Aomoto-Gelfand hypergeometric functions. We have also obtained coefficients of power series expansion around 4-dimensional space-time for two-, three- and four-point functions. The numerical results are compared with LoopTools for the case of two- and three-point functions as examples.
In this paper, we show that with the state-of-art module intersection IBP reduction method and our improved Leinartas algorithm, IBP relations for very complicated Feynman integrals can be solved and the analytic reduction coefficients can be dramati
One approach to the calculation of cross sections for infrared-safe observables in high energy collisions at next-to-leading order is to perform all of the integrations, including the virtual loop integration, by Monte Carlo numerical integration. In
We formulate general principles of building hypergeometric type series from the Jacobi theta functions that generalize the plain and basic hypergeometric series. Single and multivariable elliptic hypergeometric series are considered in detail. A char
We show that direct Feynman-parametric loop integration is possible for a large class of planar multi-loop integrals. Much of this follows from the existence of manifestly dual-conformal Feynman-parametric representations of planar loop integrals, an
Angularities are event shapes whose sensitivity to the splitting angle of a collinear emission is controlled by a continuous parameter $b$, with $ -1 < b < infty$. When measured with respect to the thrust axis, this class of QCD observables includes