ﻻ يوجد ملخص باللغة العربية
In this paper, we show that with the state-of-art module intersection IBP reduction method and our improved Leinartas algorithm, IBP relations for very complicated Feynman integrals can be solved and the analytic reduction coefficients can be dramatically simplified. We develop a large scale parallel implementation of our improved Leinartas algorithm, based on the textsc{Singular}/textsc{GPI-Space} framework. We demonstrate our method by the reduction of two-loop five-point Feynman integrals with degree-five numerators, with a simple and sparse IBP system. The analytic reduction result is then greatly simplified by our improved Leinartas algorithm to a usable form, with a compression ratio of two order of magnitudes. We further discover that the compression ratio increases with the complexity of the Feynman integrals.
We present the analytic form of all leading-color two-loop five-parton helicity amplitudes in QCD. The results are analytically reconstructed from exact numerical evaluations over finite fields. Combining a judicious choice of variables with a new ap
We present the analytic form of the two-loop five-gluon scattering amplitudes in QCD for a complete set of independent helicity configurations of external gluons. These include the first analytic results for five-point two-loop amplitudes relevant fo
We review the current state-of-the-art in integrand level reduction for five-point scattering amplitudes at two loops in QCD. We present some benchmark results for the evaluation of the leading colour two-loop five-gluon amplitudes in the physical re
The rational parts of 5-gluon one-loop amplitudes are computed by using the newly developed method for computing the rational parts directly from Feynman integrals. We found complete agreement with the previously well-known results of Bern, Dixon and
New features of the Mathematica code FIRE are presented. In particular, it can be applied together with the recently developed code LiteRed by Lee in order to provide an integration by parts reduction to master integrals for quite complicated familie