We study information transmission over a fully correlated amplitude damping channel acting on two qubits. We derive the single-shot classical channel capacity and show that entanglement is needed to achieve the channel best performance. We discuss the degradability properties of the channel and evaluate the quantum capacity for any value of the noise parameter. We finally compute the entanglement-assisted classical channel capacity.
We consider error correction procedures designed specifically for the amplitude damping channel. We analyze amplitude damping errors in the stabilizer formalism. This analysis allows a generalization of the [4,1] `approximate amplitude damping code o
f quant-ph/9704002. We present this generalization as a class of [2(M+1),M] codes and present quantum circuits for encoding and recovery operations. We also present a [7,3] amplitude damping code based on the classical Hamming code. All of these are stabilizer codes whose encoding and recovery operations can be completely described with Clifford group operations. Finally, we describe optimization options in which recovery operations may be further adapted according to the damping probability gamma.
The capacity of noisy quantum channels characterizes the highest rate at which information can be reliably transmitted and it is therefore of practical as well as fundamental importance. Capacities of classical channels are computed using alternating
optimization schemes, called Blahut-Arimoto algorithms. In this work, we generalize classical Blahut-Arimoto algorithms to the quantum setting. In particular, we give efficient iterative schemes to compute the capacity of channels with classical input and quantum output, the quantum capacity of less noisy channels, the thermodynamic capacity of quantum channels, as well as the entanglement-assisted capacity of quantum channels. We give rigorous a priori and a posteriori bounds on the estimation error by employing quantum entropy inequalities and demonstrate fast convergence of our algorithms in numerical experiments.
We consider the transfer of classical and quantum information through a memory amplitude damping channel. Such a quantum channel is modeled as a damped harmonic oscillator, the interaction between the information carriers - a train of qubits - and th
e oscillator being of the Jaynes-Cummings kind. We prove that this memory channel is forgetful, so that quantum coding theorems hold for its capacities. We analyze entropic quantities relative to two uses of this channel. We show that memory effects improve the channel aptitude to transmit both classical and quantum information, and we investigate the mechanism by which memory acts in changing the channel transmission properties.
Communication over a noisy channel is often conducted in a setting in which different input symbols to the channel incur a certain cost. For example, for bosonic quantum channels, the cost associated with an input state is the number of photons, whic
h is proportional to the energy consumed. In such a setting, it is often useful to know the maximum amount of information that can be reliably transmitted per cost incurred. This is known as the capacity per unit cost. In this paper, we generalize the capacity per unit cost to various communication tasks involving a quantum channel such as classical communication, entanglement-assisted classical communication, private communication, and quantum communication. For each task, we define the corresponding capacity per unit cost and derive a formula for it analogous to that of the usual capacity. Furthermore, for the special and natural case in which there is a zero-cost state, we obtain expressions in terms of an optimized relative entropy involving the zero-cost state. For each communication task, we construct an explicit pulse-position-modulation coding scheme that achieves the capacity per unit cost. Finally, we compute capacities per unit cost for various bosonic Gaussian channels and introduce the notion of a blocklength constraint as a proposed solution to the long-standing issue of infinite capacities per unit cost. This motivates the idea of a blocklength-cost duality, on which we elaborate in depth.
The generalized amplitude damping channel (GADC) is one of the sources of noise in superconducting-circuit-based quantum computing. It can be viewed as the qubit analogue of the bosonic thermal channel, and it thus can be used to model lossy processe
s in the presence of background noise for low-temperature systems. In this work, we provide an information-theoretic study of the GADC. We first determine the parameter range for which the GADC is entanglement breaking and the range for which it is anti-degradable. We then establish several upper bounds on its classical, quantum, and private capacities. These bounds are based on data-processing inequalities and the uniform continuity of information-theoretic quantities, as well as other techniques. Our upper bounds on the quantum capacity of the GADC are tighter than the known upper bound reported recently in [Rosati et al., Nat. Commun. 9, 4339 (2018)] for the entire parameter range of the GADC, thus reducing the gap between the lower and upper bounds. We also establish upper bounds on the two-way assisted quantum and private capacities of the GADC. These bounds are based on the squashed entanglement, and they are established by constructing particular squashing channels. We compare these bounds with the max-Rains information bound, the mutual information bound, and another bound based on approximate covariance. For all capacities considered, we find that a large variety of techniques are useful in establishing bounds.