ترغب بنشر مسار تعليمي؟ اضغط هنا

Guard Your Daggers and Traces: On The Equational Properties of Guarded (Co-)recursion

131   0   0.0 ( 0 )
 نشر من قبل EPTCS
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Stefan Milius




اسأل ChatGPT حول البحث

Motivated by the recent interest in models of guarded (co-)recursion we study its equational properties. We formulate axioms for guarded fixpoint operators generalizing the axioms of iteration theories of Bloom and Esik. Models of these axioms include both standard (e.g., cpo-based) models of iteration theories and models of guarded recursion such as complete metric spaces or the topos of trees studied by Birkedal et al. We show that the standard result on the satisfaction of all Conway axioms by a unique dagger operation generalizes to the guarded setting. We also introduce the notion of guarded trace operator on a category, and we prove that guarded trace and guarded fixpoint operators are in one-to-one correspondence. Our results are intended as first steps leading to the description of classifying theories for guarded recursion and hence completeness results involving our axioms of guarded fixpoint operators in future work.



قيم البحث

اقرأ أيضاً

This paper improves the treatment of equality in guarded dependent type theory (GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program lo gics, and for programming and reasoning with coinductive types. We wish to implement GDTT with decidable type-checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. CTT is a variation of Martin-Lof type theory in which the identity type is replaced by abstract paths between terms. CTT provides a computational interpretation of functional extensionality, is conjectured to have decidable type checking, and has an implemented type-checker. Our new type theory, called guarded cubical type theory, provides a computational interpretation of extensionality for guarded recursive types. This further expands the foundations of CTT as a basis for formalisation in mathematics and computer science. We present examples to demonstrate the expressivity of our type theory, all of which have been checked using a prototype type-checker implementation, and present semantics in a presheaf category.
We present the guarded lambda-calculus, an extension of the simply typed lambda-calculus with guarded recursive and coinductive types. The use of guarded recursive types ensures the productivity of well-typed programs. Guarded recursive types may be transformed into coinductive types by a type-former inspired by modal logic and Atkey-McBride clock quantification, allowing the typing of acausal functions. We give a call-by-name operational semantics for the calculus, and define adequate denotational semantics in the topos of trees. The adequacy proof entails that the evaluation of a program always terminates. We introduce a program logic with Lob induction for reasoning about the contextual equivalence of programs. We demonstrate the expressiveness of the calculus by showing the definability of solutions to Ruttens behavioural differential equations.
121 - Nicolas Guenot 2015
Proof assistants and programming languages based on type theories usually come in two flavours: one is based on the standard natural deduction presentation of type theory and involves eliminators, while the other provides a syntax in equational style . We show here that the equational approach corresponds to the use of a focused presentation of a type theory expressed as a sequent calculus. A typed functional language is presented, based on a sequent calculus, that we relate to the syntax and internal language of Agda. In particular, we discuss the use of patterns and case splittings, as well as rules implementing inductive reasoning and dependent products and sums.
We present the guarded lambda-calculus, an extension of the simply typed lambda-calculus with guarded recursive and coinductive types. The use of guarded recursive types ensures the productivity of well-typed programs. Guarded recursive types may be transformed into coinductive types by a type-former inspired by modal logic and Atkey-McBride clock quantification, allowing the typing of acausal functions. We give a call-by-name operational semantics for the calculus, and define adequate denotational semantics in the topos of trees. The adequacy proof entails that the evaluation of a program always terminates. We demonstrate the expressiveness of the calculus by showing the definability of solutions to Ruttens behavioural differential equations. We introduce a program logic with L{o}b induction for reasoning about the contextual equivalence of programs.
This paper studies the logical properties of a very general class of infinite ranked trees, namely those generated by higher-order recursion schemes. We consider, for both monadic second-order logic and modal mu-calculus, three main problems: model-c hecking, logical reflection (aka global model-checking, that asks for a finite description of the set of elements for which a formula holds) and selection (that asks, if exists, for some finite description of a set of elements for which an MSO formula with a second-order free variable holds). For each of these problems we provide an effective solution. This is obtained thanks to a known connection between higher-order recursion schemes and collapsible pushdown automata and on previous work regarding parity games played on transition graphs of collapsible pushdown automata.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا