ﻻ يوجد ملخص باللغة العربية
This paper studies the logical properties of a very general class of infinite ranked trees, namely those generated by higher-order recursion schemes. We consider, for both monadic second-order logic and modal mu-calculus, three main problems: model-checking, logical reflection (aka global model-checking, that asks for a finite description of the set of elements for which a formula holds) and selection (that asks, if exists, for some finite description of a set of elements for which an MSO formula with a second-order free variable holds). For each of these problems we provide an effective solution. This is obtained thanks to a known connection between higher-order recursion schemes and collapsible pushdown automata and on previous work regarding parity games played on transition graphs of collapsible pushdown automata.
Higher-order recursion schemes (HORS) have received much attention as a useful abstraction of higher-order functional programs with a number of new verification techniques employing HORS model-checking as their centrepiece. We give an account of the
Higher-order recursion schemes are recursive equations defining new operations from given ones called terminals. Every such recursion scheme is proved to have a least interpreted semantics in every Scotts model of lambda-calculus in which the termina
This paper is about reachability analysis in a restricted subclass of multi-pushdown automata. We assume that the control states of an automaton are partially ordered, and all transitions of an automaton go downwards with respect to the order. We pro
Let S be a commutative semiring. M. Droste and P. Gastin have introduced in 2005 weighted monadic second order logic WMSOL with weights in S. They use a syntactic fragment RMSOL of WMSOL to characterize word functions (power series) recognizable by w
In this paper, we settle a problem in probabilistic verification of infinite--state process (specifically, {it probabilistic pushdown process}). We show that model checking {it stateless probabilistic pushdown process} (pBPA) against {it probabilistic computational tree logic} (PCTL) is undecidable.