ﻻ يوجد ملخص باللغة العربية
We report experimental and theoretical studies of edge magnetoplasmon (EMP) transport in quantum Hall (QH) devices. We develop a model that allows us to calculate the transport coefficients of EMPs in QH devices with various geometries. In our model, a QH system is described as a chiral distributed-element (CDE) circuit, where the effects of Coulomb interaction are represented by an electrochemical capacitance distributed along unidirectional transmission lines. We measure the EMP transport coefficients through single- and coupled-edge channels, a quantum point contact, and single- and double-cavity structures. These measured transmission spectra can be reproduced well by simulations using the corresponding CDE circuits. By fitting the experimental results with the simulations, we deduce the circuit parameters that characterize the electrostatic environment around the edge channels in a realistic QH system. The observed gate-voltage dependences of the EMP transport properties in gate-defined structures are explained in terms of the gate tuning of the circuit parameters in CDE circuits.
We have investigated microwave transmission through the edge of quantum Hall systems by employing a coplanar waveguide (CPW) fabricated on the surface of a GaAs/AlGaAs two-dimensional electron gas (2DEG) wafer. An edge is introduced to the slot regio
The quantum Hall effect is necessarily accompanied by low-energy excitations localized at the edge of a two-dimensional electron system. For the case of electrons interacting via the long-range Coulomb interaction, these excitations are edge magnetop
Classical wave fields are real-valued, ensuring the wave states at opposite frequencies and momenta to be inherently identical. Such a particle-hole symmetry can open up new possibilities for topological phenomena in classical systems. Here we show t
We investigate the dynamics of a microwave-driven Josephson junction capacitively coupled to a lumped element LC oscillator. In the regime of driving where the Josephson junction can be approximated as a Kerr oscillator, this minimal nonlinear system
We discuss the heat transfer by photons between two metals coupled by a linear element with a reactive impedance. Using a simple circuit approach, we calculate the spectral power transmitted from one resistor to the other and find that it is determin