ترغب بنشر مسار تعليمي؟ اضغط هنا

Sensitivity studies for r-process nucleosynthesis in three astrophysical scenarios

149   0   0.0 ( 0 )
 نشر من قبل Rebecca Surman
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In rapid neutron capture, or r-process, nucleosynthesis, heavy elements are built up via a sequence of neutron captures and beta decays that involves thousands of nuclei far from stability. Though we understand the basics of how the r-process proceeds, its astrophysical site is still not conclusively known. The nuclear network simulations we use to test potential astrophysical scenarios require nuclear physics data (masses, beta decay lifetimes, neutron capture rates, fission probabilities) for all of the nuclei on the neutron-rich side of the nuclear chart, from the valley of stability to the neutron drip line. Here we discuss recent sensitivity studies that aim to determine which individual pieces of nuclear data are the most crucial for r-process calculations. We consider three types of astrophysical scenarios: a traditional hot r-process, a cold r-process in which the temperature and density drop rapidly, and a neutron star merger trajectory.



قيم البحث

اقرأ أيضاً

298 - R. Surman , M. Mumpower , J. Cass 2013
About half of the heavy elements in the Solar System were created by rapid neutron capture, or r-process, nucleosynthesis. In the r-process, heavy elements are built up via a sequence of neutron captures and beta decays in which an intense neutron fl ux pushes material out towards the neutron drip line. The nuclear network simulations used to test potential astrophysical scenarios for the r-process therefore require nuclear physics data (masses, beta decay lifetimes, neutron capture rates, fission probabilities) for thousands of nuclei far from stability. Only a small fraction of this data has been experimentally measured. Here we discuss recent sensitivity studies that aim to determine the nuclei whose properties are most crucial for r-process calculations.
Simulations of r-process nucleosynthesis require nuclear physics information for thousands of neutron-rich nuclear species from the line of stability to the neutron drip line. While arguably the most important pieces of nuclear data for the r-process are the masses and beta decay rates, individual neutron capture rates can also be of key importance in setting the final r-process abundance pattern. Here we consider the influence of neutron capture rates in forming the A~80 and rare earth peaks.
192 - S. Brett , I. Bentley , N. Paul 2012
The rapid neutron capture process (r-process) is thought to be responsible for the creation of more than half of all elements beyond iron. The scientific challenges to understanding the origin of the heavy elements beyond iron lie in both the uncerta inties associated with astrophysical conditions that are needed to allow an r-process to occur and a vast lack of knowledge about the properties of nuclei far from stability. There is great global competition to access and measure the most exotic nuclei that existing facilities can reach, while simultaneously building new, more powerful accelerators to make even more exotic nuclei. This work is an attempt to determine the most crucial nuclear masses to measure using an r-process simulation code and several mass models (FRDM, Duflo-Zuker, and HFB-21). The most important nuclear masses to measure are determined by the changes in the resulting r-process abundances. Nuclei around the closed shells near N=50, 82, and 126 have the largest impact on r-process abundances irrespective of the mass models used.
The rapid neutron capture process (r process) is believed to be responsible for about half of the production of the elements heavier than iron and contributes to abundances of some lighter nuclides as well. A universal pattern of r-process element ab undances is observed in some metal-poor stars of the Galactic halo. This suggests that a well-regulated combination of astrophysical conditions and nuclear physics conspires to produce such a universal abundance pattern. The search for the astrophysical site for r-process nucleosynthesis has stimulated interdisciplinary research for more than six decades. There is currently much enthusiasm surrounding evidence for r-process nucleosynthesis in binary neutron star mergers in the multi-wavelength follow-up observations of kilonova/gravitational-wave GRB170807A/GW170817. Nevertheless, there remain questions as to the contribution over the history of the Galaxy to the current solar-system r-process abundances from other sites such as neutrino-driven winds or magnetohydrodynamical ejection of material from core-collapse supernovae. In this review we highlight some current issues surrounding the nuclear physics input, astronomical observations, galactic chemical evolution, and theoretical simulations of r-process astrophysical environments with the goal of outlining a path toward resolving the remaining mysteries of the r process.
149 - Stephane Goriely , 2011
Although the rapid neutron-capture process, or r-process, is fundamentally important for explaining the origin of approximately half of the stable nuclei with A > 60, the astrophysical site of this process has not been identified yet. Here we study r -process nucleosynthesis in material that is dynamically ejected by tidal and pressure forces during the merging of binary neutron stars (NSs) and within milliseconds afterwards. For the first time we make use of relativistic hydrodynamical simulations of such events, defining consistently the conditions that determine the nucleosynthesis, i.e., neutron enrichment, entropy, early density evolution and thus expansion timescale, and ejecta mass. We find that 10^{-3}-10^{-2} solar masses are ejected, which is enough for mergers to be the main source of heavy (A > 140) galactic r-nuclei for merger rates of some 10^{-5} per year. While asymmetric mergers eject 2-3 times more mass than symmetric ones, the exact amount depends weakly on whether the NSs have radii of ~15 km for a stiff nuclear equation of state (EOS) or ~12 km for a soft EOS. R-process nucleosynthesis during the decompression becomes largely insensitive to the detailed conditions because of efficient fission recycling, producing a composition that closely follows the solar r-abundance distribution for nuclei with mass numbers A > 140. Estimating the light curve powered by the radioactive decay heating of r-process nuclei with an approximative model, we expect high emission in the B-V-R bands for 1-2 days with potentially observable longer duration in the case of asymmetric mergers because of the larger ejecta mass.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا