ﻻ يوجد ملخص باللغة العربية
In regions where ice sheets are increasing in mass, there is a 50-200 m layer of old snow called firn which does not melt in the summer months. The density of firn tracks the transformation of snow into glacial ice at approximately 917 kg m^-3. The process of firn densification is important in at least two ways: 1) it can be a dominant component in the observed rate of change of the surface elevation, and 2) storage of liquid water in the lower density firn layer is now considered a critical component in the mass balance of ice sheets. If the rate of change of surface elevation can be equated with the rate of change in the mass of the ice sheet, we would have an excellent means of monitoring ice sheet mass balance. However, knowledge of firn densification rates is needed to make the inference of mass rate of change from volume rate of change. Several firn models have been created for areas without melt. We have reformulated these models with the finite-element software package FEniCS and integrated them with an enthalpy-formulation. This integration allows us to account for the melting and subsequent re-freezing of firn layers into ice lenses.
To accurately restore interdecadal oscillations from the length of day variation ({Delta}LOD) and the polar motion (PM), we propose a normal time-frequency transform (NTFT) combing with curve fitting scheme. Compared with the NTFT, the combined NTFT
In this work, the finite elements method (FEM) is used to analyse the growth of fretting cracks. FEM can be favourably used to extract the stress intensity factors in mixed mode, a typical situation for cracks growing in the vicinity of a fretting co
Agile processes are now widely practiced by software engineering (SE) teams, and the agile manifesto claims that agile methods support responding to changes well. However, no study appears to have researched whether this is accurate in reality. Requi
Plate motions are governed by equilibrium between basal and edge forces. Great earthquakes may induce differential static stress changes across tectonic plates, enabling a new equilibrium state. Here we consider the torque balance for idealized circu
This work reports on a study to develop a patient-specific finite element model of the Transcatheter Aortic Valve Implantation procedure, using a model of a balloon-expandable percutaneous prosthetic aortic valve as a framework for the prediction of