ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross sections, multiplicity and moment distributions at the LHC

672   0   0.0 ( 0 )
 نشر من قبل Emerson Luna
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The unitarity of the $S$-matrix requires that the absorptive part of the elastic scattering amplitude receives contributions from both the inelastic and the elastic channels. We explore this unitarity condition in order to describe, in a connected way, hadron-hadron observables like the total and elastic differential cross sections, the ratio of the real to imaginary part of the forward scattering amplitude and the inclusive multiplicity distributions in full phase space, over a large range of energies. We introduce non-perturbative QCD effects in the forward scattering amplitude by using the infrared QCD effective charge dependent on the dynamical gluon mass. In our analysis we pay special attention to the theoretical uncertainties in the predictions due to this mass scale variation. We also present quantitative predictions for the $H_{q}$ moments at high energies. Our results reproduce the moment oscillations observed in experimental data, and are consistent with the behavior predicted by QCD.



قيم البحث

اقرأ أيضاً

We consider QCD radiative corrections to $W^+W^-$ production at the LHC and present the first fully differential predictions for this process at next-to-next-to-leading order (NNLO) in perturbation theory. Our computation consistently includes the le ptonic decays of the $W$ bosons, taking into account spin correlations, off-shell effects and non-resonant contributions. Detailed predictions are presented for the different-flavour channel $pptomu^+e^- u_mu {bar u}_e+X$ at $sqrt{s}=8$ and $13$ TeV. In particular, we discuss fiducial cross sections and distributions in the presence of standard selection cuts used in experimental $W^+W^-$ and $Hto W^+W^-$ analyses at the LHC. The inclusive $W^+W^-$ cross section receives large NNLO corrections, and, due to the presence of a jet veto, typical fiducial cuts have a sizeable influence on the behaviour of the perturbative expansion. The availability of differential NNLO predictions, both for inclusive and fiducial observables, will play an important role in the rich physics programme that is based on precision studies of $W^+W^-$ signatures at the LHC.
This Report summarises the results of the second years activities of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. The first working group report Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002) focuses on predictions (central values and errors) for total Higgs production cross sections and Higgs branching ratios in the Standard Model and its minimal supersymmetric extension, covering also related issues such as Monte Carlo generators, parton distribution functions, and pseudo-observables. This second Report represents the next natural step towards realistic predictions upon providing results on cross sections with benchmark cuts, differential distributions, details of specific decay channels, and further recent developments.
We present the results obtained by the WW Cross-sections and Distributions working group during the CERN Workshop Physics at LEP2 (1994/1995)
150 - Agnes Grau 2010
To settle the question whether the growth with energy is universal for different hadronic total cross-sections, we present results from theoretical models for pion-proton, proton-proton and proton-antiproton total cross-sections. We show that present and planned experiments at LHC can differentiate between different models, all of which are consistent with presently available (lower energy) data. This study is also relevant for the analysis of those very high energy cosmic ray data which require reliable pion-proton total cross-sections as seeds. A preliminary study of the total pion-pion cross-sections is also made.
We perform a phenomenological study of $Z$ plus jet, Higgs plus jet and di-jet production at the Large Hadron Collider. We investigate in particular the dependence of the leading jet cross section on the jet radius as a function of the jet transverse momentum. Theoretical predictions are obtained using perturbative QCD calculations at the next-to and next-to-next-to-leading order, using a range of renormalization and factorization scales. The fixed order predictions are compared to results obtained from matching next-to-leading order calculations to parton showers. A study of the scale dependence as a function of the jet radius is used to provide a better estimate of the scale uncertainty for small jet sizes. The non-perturbative corrections as a function of jet radius are estimated from different generators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا