The unitarity of the $S$-matrix requires that the absorptive part of the elastic scattering amplitude receives contributions from both the inelastic and the elastic channels. We explore this unitarity condition in order to describe, in a connected wa
y, hadron-hadron observables like the total and elastic differential cross sections, the ratio of the real to imaginary part of the forward scattering amplitude and the inclusive multiplicity distributions in full phase space, over a large range of energies. We introduce non-perturbative QCD effects in the forward scattering amplitude by using the infrared QCD effective charge dependent on the dynamical gluon mass. In our analysis we pay special attention to the theoretical uncertainties in the predictions due to this mass scale variation. We also present quantitative predictions for the $H_{q}$ moments at high energies. Our results reproduce the moment oscillations observed in experimental data, and are consistent with the behavior predicted by QCD.
This talk discusses recent results for next-to-next-to-leading order (NNLO) QCD corrections to jet cross sections and transverse momentum distributions. The results are obtained in the NNLOJET code framework, which provides an implementation of the a
ntenna subtraction method for the handling of infrared singular contributions at NNLO. We briefly describe the NNLOJET implementation, with particular emphasis on the construction of the real radiation phase space, which is tailored to ensure stability in all infrared sensitive regions.
This Report summarises the results of the second years activities of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have
appeared in the last few years. The first working group report Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002) focuses on predictions (central values and errors) for total Higgs production cross sections and Higgs branching ratios in the Standard Model and its minimal supersymmetric extension, covering also related issues such as Monte Carlo generators, parton distribution functions, and pseudo-observables. This second Report represents the next natural step towards realistic predictions upon providing results on cross sections with benchmark cuts, differential distributions, details of specific decay channels, and further recent developments.
It is shown that exact, amplitude-based resummation allows IR-improvement of the usual DGLAP theory. This results in a new set of kernels, parton distributions and attendant reduced cross sections, so that the QCD perturbative result for the respecti
ve hadron-hadron or lepton-hadron cross section is unchanged order-by-order in $alpha_s$ at large squared-momentum transfers. We compare these new objects with their usual counter-parts and illustrate the effects of the IR-improvement in some phenomenological cases of interest with an eye toward precision applications in LHC physics scenarios.
We present updated predictions for the cross-sections for pair production of squarks and gluinos at the LHC Run II. First of all, we update the calculations based on NLO+NLL partonic cross-sections by using the NNPDF3.0NLO global analysis. This study
includes a full characterization of theoretical uncertainties from higher orders, PDFs and the strong coupling. Then, we explore the implications for this calculation of the recent NNPDF3.0 PDFs with NLO+NLL threshold resummation. We find that the shift in the results induced by the threshold-improved PDFs is within the total theory uncertainty band of the calculation based on NLO PDFs. However, we also observe that the central values of the cross-sections are modified both in a qualitative and a quantitative way, illustrating the relevance and impact of using threshold-improved PDFs together with resummed partonic cross-sections. The updated NLO+NLL cross-sections based on NNPDF3.0NLO are publicly available in the NLL-fast format, and should be an important ingredient for the interpretation of the searches for supersymmetric particles at Run II.