ﻻ يوجد ملخص باللغة العربية
Dynamical correlation functions of the toric code in a uniform magnetic field are studied inside the topological phase, in the small-field limit. Such an experimentally measurable quantity displays rich field-dependent features that can be understood via the interplay of the kinetics and the interaction of the anyonic excitations. In particular, it is sensitive to the two-quasiparticle bound states that are present in the spectrum for a wide range of magnetic fields. Interestingly, such collective modes can even constitute the lowest-energy excitations of the system.
We study the robustness of a generalized Kitaevs toric code with Z_N degrees of freedom in the presence of local perturbations. For N=2, this model reduces to the conventional toric code in a uniform magnetic field. A quantitative analysis is perform
We investigate quantum transport and thermoelectrical properties of a finite-size Su-Schrieffer-Heeger model, a paradigmatic model for a one-dimensional topological insulator, which displays topologically protected edge states. By coupling the model
The competition between interactions and dissipative processes in a quantum many-body system can drive phase transitions of different order. Exploiting a combination of cluster methods and quantum trajectories, we show how the systematic inclusion of
We study the finite-temperature behavior of the Lipkin-Meshkov-Glick model, with a focus on correlation properties as measured by the mutual information. The latter, which quantifies the amount of both classical and quantum correlations, is computed
We explore the possibility of dynamical quantum phase transitions (DQPTs) occurring during the temporal evolution of a quenched transverse field Ising chain coupled to a particle loss type of bath (local in Jordan-Wigner fermion space) using t