ترغب بنشر مسار تعليمي؟ اضغط هنا

Breakdown of a perturbed Z_N topological phase

215   0   0.0 ( 0 )
 نشر من قبل Julien Vidal
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the robustness of a generalized Kitaevs toric code with Z_N degrees of freedom in the presence of local perturbations. For N=2, this model reduces to the conventional toric code in a uniform magnetic field. A quantitative analysis is performed for the perturbed Z_3 toric code by applying a combination of high-order series expansions and variational techniques. We provide strong evidences for first- and second-order phase transitions between topologically-ordered and polarized phases. Most interestingly, our results also indicate the existence of topological multi-critical points in the phase diagram.



قيم البحث

اقرأ أيضاً

We examine the zero-temperature phase diagram of the two-dimensional Levin-Wen string-net model with Fibonacci anyons in the presence of competing interactions. Combining high-order series expansions around three exactly solvable points and exact dia gonalizations, we find that the non-Abelian doubled Fibonacci topological phase is separated from two nontopological phases by different second-order quantum critical points, the positions of which are computed accurately. These trivial phases are separated by a first-order transition occurring at a fourth exactly solvable point where the ground-state manifold is infinitely many degenerate. The evaluation of critical exponents suggests unusual universality classes.
243 - F.-J. Jiang , U. Gerber 2011
We study the quantum phase transition from a super solid phase to a solid phase of rho = 1/2 for the extended Bose-Hubbard model on the honeycomb lattice using first principles Monte Carlo calculations. The motivation of our study is to quantitativel y understand the impact of theoretical input, in particular the dynamical critical exponent z, in calculating the critical exponent nu. Hence we have carried out four sets of simulations with beta = 2N^{1/2}, beta = 8N^{1/2}, beta = N/2, and beta = N/4, respectively. Here beta is the inverse temperature and N is the numbers of lattice sites used in the simulations. By applying data collapse to the observable superfluid density rho_{s2} in the second spatial direction, we confirm that the transition is indeed governed by the superfluid-insulator universality class. However we find it is subtle to determine the precise location of the critical point. For example, while the critical chemical potential (mu/V)_c occurs at (mu/V)_c = 2.3239(3) for the data obtained using beta = 2N^{1/2}, the (mu/V)_c determined from the data simulated with beta = N/2 is found to be (mu/V)_c = 2.3186(2). Further, while a good data collapse for rho_{s2}N can be obtained with the data determined using beta = N/4 in the simulations, a reasonable quality of data collapse for the same observable calculated from another set of simulations with beta = 8N^{1/2} can hardly be reached. Surprisingly, assuming z for this phase transition is determined to be 2 first in a Monte Carlo calculation, then a high quality data collapse for rho_{s2}N can be achieved for (mu/V)_c ~ 2.3184 and nu ~ 0.7 using the data obtained with beta = 8N^{1/2}. Our results imply that one might need to reconsider the established phase diagrams of some models if the accurate location of the critical point is crucial in obtaining a conclusion.
Ginzburg-Landau theory of continuous phase transitions implicitly assumes that microscopic changes are negligible in determining the thermodynamic properties of the system. In this work we provide an example that clearly contrasts with this assumptio n. We show that topological frustration can change the nature of a second order quantum phase transition separating two different ordered phases. Even more remarkably, frustration is triggered simply by a suitable choice of boundary conditions in a 1D chain. While with every other BC each of two phases is characterized by its own local order parameter, with frustration no local order can survive. We construct string order parameters to distinguish the two phases, but, having proved that topological frustration is capable of altering the nature of a systems phase transition, our results pose a clear challenge to the current understanding of phase transitions in complex quantum systems.
Results are given for the ground state energy and excitation spectrum of a simple $N$-state $Z_N$ spin chain described by free parafermions. The model is non-Hermitian for $N ge 3$ with a real ground state energy and a complex excitation spectrum. Al though having a simpler Hamiltonian than the superintegrable chiral Potts model, the model is seen to share some properties with it, e.g., the specific heat exponent $alpha=1-2/N$ and the anisotropic correlation length exponents $ u_parallel =1$ and $ u_perp=2/N$.
In quantum many-body systems with local interactions, the effects of boundary conditions are considered to be negligible, at least for sufficiently large systems. Here we show an example of the opposite. We consider a spin chain with two competing in teractions, set on a ring with an odd number of sites. When only the dominant interaction is antiferromagnetic, and thus induces topological frustration, the standard antiferromagnetic order (expressed by the magnetization) is destroyed. When also the second interaction turns from ferro to antiferro, an antiferromagnetic order characterized by a site-dependent magnetization which varies in space with an incommensurate pattern, emerges. This modulation results from a ground state degeneracy, which allows to break the translational invariance. The transition between the two cases is signaled by a discontinuity in the first derivative of the ground state energy and represents a quantum phase transition induced by a special choice of boundary conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا