ترغب بنشر مسار تعليمي؟ اضغط هنا

Studying edge geometry in transiently turbulent shear flows

334   0   0.0 ( 0 )
 نشر من قبل Matthew Chantry
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In linearly stable shear flows at moderate Re, turbulence spontaneously decays despite the existence of a codimension-one manifold, termed the edge of chaos, which separates decaying perturbations from those triggering turbulence. We statistically analyse the decay in plane Couette flow, quantify the breaking of self-sustaining feedback loops and demonstrate the existence of a whole continuum of possible decay paths. Drawing parallels with low-dimensional models and monitoring the location of the edge relative to decaying trajectories we provide evidence, that the edge of chaos separates state space not globally. It is instead wrapped around the turbulence generating structures and not an independent dynamical structure but part of the chaotic saddle. Thereby, decaying trajectories need not cross the edge, but circumnavigate it while unwrapping from the turbulent saddle.



قيم البحث

اقرأ أيضاً

Turbulent-laminar intermittency, typically in the form of bands and spots, is a ubiquitous feature of the route to turbulence in wall-bounded shear flows. Here we study the idealised shear between stress-free boundaries driven by a sinusoidal body fo rce and demonstrate quantitative agreement between turbulence in this flow and that found in the interior of plane Couette flow -- the region excluding the boundary layers. Exploiting the absence of boundary layers, we construct a model flow that uses only four Fourier modes in the shear direction and yet robustly captures the range of spatiotemporal phenomena observed in transition, from spot growth to turbulent bands and uniform turbulence. The model substantially reduces the cost of simulating intermittent turbulent structures while maintaining the essential physics and a direct connection to the Navier-Stokes equations. We demonstrate the generic nature of this process by introducing stress-free equivalent flows for plane Poiseuille and pipe flows which again capture the turbulent-laminar structures seen in transition.
The Lagrangian (LA) and Eulerian Acceleration (EA) properties of fluid particles in homogeneous turbulence with uniform shear and uniform stable stratification are studied using direct numerical simulations. The Richardson number is varied from $Ri=0 $, corresponding to unstratified shear flow, to $Ri=1$, corresponding to strongly stratified shear flow. The probability density functions (pdfs) of both LA and EA have a stretched-exponential shape and they show a strong and similar influence on the Richardson number. The extreme values of the EA are stronger than those observed for the LA. Geometrical statistics explain that the magnitude of the EA is larger than its Lagrangian counterpart due to the mutual cancellation of the Eulerian and convective acceleration, as both vectors statistically show an anti-parallel preference. A wavelet-based scale-dependent decomposition of the LA and EA is performed. The tails of the acceleration pdfs grow heavier for smaller scales of turbulent motion. Hence the flatness increases with decreasing scale, indicating stronger intermittency at smaller scales. The joint pdfs of the LA and EA indicate a trend to stronger correlations with increasing Richardson number and at larger scales of the turbulent motion. A consideration of the terms in the Navier--Stokes equation shows that the LA is mainly determined by the pressure-gradient term, while the EA is dominated by the nonlinear convection term.
On its way to turbulence, plane Couette flow - the flow between counter-translating parallel plates - displays a puzzling steady oblique laminar-turbulent pattern. We approach this problem via Galerkin modelling of the Navier-Stokes equations. The wa ll-normal dependence of the hydrodynamic field is treated by means of expansions on functional bases fitting the boundary conditions exactly. This yields a set of partial differential equations for the spatiotemporal dynamics in the plane of the flow. Truncating this set beyond lowest nontrivial order is numerically shown to produce the expected pattern, therefore improving over what was obtained at cruder effective wall-normal resolution. Perspectives opened by the approach are discussed.
Phoresis, the drift of particles induced by scalar gradients in a flow, can result in an effective compressibility, bringing together or repelling particles from each other. Here, we ask whether this effect can affect the transport of particles in a turbulent flow. To this end, we study how the dispersion of a cloud of phoretic particles is modified when injected in the flow, together with a blob of scalar, whose effect is to transiently bring particles together, or push them away from the center of the blob. The resulting phoretic effect can be quantified by a single dimensionless number. Phenomenological considerations lead to simple predictions for the mean separation between particles, which are consistent with results of direct numerical simulations. Using the numerical results presented here, as well as those from previous studies, we discuss quantitatively the experimental consequences of this work and the possible impact of such phoretic mechanisms in natural systems.
We present velocity spectra measured in three cryogenic liquid 4He steady flows: grid and wake flows in a pressurized wind tunnel capable of achieving mean velocities up to 5 m/s at temperatures above and below the superfluid transition, down to 1.7 K, and a chunk turbulence flow at 1.55 K, capable of sustaining mean superfluid velocities up to 1.3 m/s. Depending on the flows, the stagnation pressure probes used for anemometry are resolving from one to two decades of the inertial regime of the turbulent cascade. We do not find any evidence that the second order statistics of turbulence below the superfluid transition differ from the ones of classical turbulence, above the transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا