ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark Energy Constraints after Planck

149   0   0.0 ( 0 )
 نشر من قبل Jun-Qing Xia
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Planck collaboration has recently published maps of the Cosmic Microwave Background radiation with the highest precision. In the standard flat $Lambda$CDM framework, Planck data show that the Hubble constant $H_0$ is in tension with that measured by the several direct probes on $H_0$. In this paper, we perform a global analysis from the current observational data in the general dark energy models and find that resolving this tension on $H_0$ requires the dark energy model with its equation of state (EoS) $w eq-1$. Firstly, assuming the $w$ to be a constant, the Planck data favor $w < -1$ at about $2,sigma$ confidence level when combining with the supernovae SNLS compilation. And consequently the value derived on $H_0$, $H_0=71.3pm2.0$ ${rm km,s^{-1},Mpc^{-1}}$ (68% C.L.), is consistent with that from direct $H_0$ probes. We then investigate the dark energy model with a time-evolving $w$, and obtain the 68% C.L. constraints $w_0=-0.81pm0.19$ and $w_a=-1.9pm1.1$ from the Planck data and the SNLS compilation. Current data still slightly favor the Quintom dark energy scenario with EoS across the cosmological constant boundary $wequiv-1$.



قيم البحث

اقرأ أيضاً

We present new constraints on coupled dark energy from the recent measurements of the Cosmic Microwave Background Anisotropies from the Planck satellite mission. We found that a coupled dark energy model is fully compatible with the Planck measuremen ts, deriving a weak bound on the dark matter-dark energy coupling parameter xi=-0.49^{+0.19}_{-0.31} at 68% c.l.. Moreover if Planck data are fitted to a coupled dark energy scenario, the constraint on the Hubble constant is relaxed to H_0=72.1^{+3.2}_{-2.3} km/s/Mpc, solving the tension with the Hubble Space Telescope value. We show that a combined Planck+HST analysis provides significant evidence for coupled dark energy finding a non-zero value for the coupling parameter xi, with -0.90< xi <-0.22 at 95% c.l.. We also consider the combined constraints from the Planck data plus the BAO measurements of the 6dF Galaxy Survey, the Sloan Digital Sky Survey and the Baron Oscillation Spectroscopic Survey.
We use cosmological observations in the post-Planck era to derive limits on thermally produced cosmological axions. In the early universe such axions contribute to the radiation density and later to the hot dark matter fraction. We find an upper limi t m_a < 0.67 eV at 95% C.L. after marginalising over the unknown neutrino masses, using CMB temperature and polarisation data from Planck and WMAP respectively, the halo matter power spectrum extracted from SDSS-DR7, and the local Hubble expansion rate H_0 released by the Carnegie Hubble Program based on a recalibration of the Hubble Space Telescope Key Project sample. Leaving out the local H_0 measurement relaxes the limit somewhat to 0.86 eV, while Planck+WMAP alone constrain the axion mass to 1.01 eV, the first time an upper limit on m_a has been obtained from CMB data alone. Our axion limit is therefore not very sensitive to the tension between the Planck-inferred H_0 and the locally measured value. This is in contrast with the upper limit on the neutrino mass sum, which we find here to range from 0.27 eV at 95% C.L. combining all of the aforementioned observations, to 0.84 eV from CMB data alone.
We present new constraints on the relativistic neutrino effective number N_eff and on the Cosmic Microwave Background power spectrum lensing amplitude A_L from the recent Planck 2013 data release. Including observations of the CMB large angular scale polarization from the WMAP satellite, we obtain the bounds N_eff = 3.71 +/- 0.40 and A_L = 1.25 +/- 0.13 at 68% c.l.. The Planck dataset alone is therefore suggesting the presence of a dark radiation component at 91.1% c.l. and hinting for a higher power spectrum lensing amplitude at 94.3% c.l.. We discuss the agreement of these results with the previous constraints obtained from the Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT). Considering the constraints on the cosmological parameters, we found a very good agreement with the previous WMAP+SPT analysis but a tension with the WMAP+ACT results, with the only exception of the lensing amplitude.
Recent Cosmic Microwave Background (CMB) results from the Planck satellite, combined with previous CMB data and Hubble constant measurements from the Hubble Space Telescope, provide a constraint on the effective number of relativistic degrees of free dom of Neff=3.62^{+0.50}_{-0.48} at 95% CL. These new measurements provide a unique opportunity to place limits on models containing relativistic species at the decoupling epoch. Here we review the bounds or the allowed parameter regions in sterile neutrino models, hadronic axion models as well as on extended dark sectors with additional light species based on the latest Planck CMB observations.
In this article we compare a variety of well known dynamical dark energy models using the cosmic microwave background measurements from the 2018 Planck legacy and 2015 Planck data releases, the baryon acoustic oscillations measurements and the local measurements of $H_0$ obtained by the SH0ES (Supernovae, $H_0$, for the Equation of State of Dark energy) collaboration analysing the Hubble Space Telescope data. We discuss the alleviation of $H_0$ tension, that is obtained at the price of a phantom-like dark energy equation of state. We perform a Bayesian evidence analysis to quantify the improvement of the fit, finding that all the dark energy models considered in this work are preferred against the $Lambda$CDM scenario. Finally, among all the possibilities analyzed, the CPL model is the best one in fitting the data and solving the $H_0$ tension at the same time. However, unfortunately, this dynamical dark energy solution is not supported by the baryon acoustic oscillations (BAO) data, and the tension is restored when BAO data are included for all the models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا