ترغب بنشر مسار تعليمي؟ اضغط هنا

New constraints on Coupled Dark Energy from Planck

205   0   0.0 ( 0 )
 نشر من قبل Valentina Maria Salvatelli
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new constraints on coupled dark energy from the recent measurements of the Cosmic Microwave Background Anisotropies from the Planck satellite mission. We found that a coupled dark energy model is fully compatible with the Planck measurements, deriving a weak bound on the dark matter-dark energy coupling parameter xi=-0.49^{+0.19}_{-0.31} at 68% c.l.. Moreover if Planck data are fitted to a coupled dark energy scenario, the constraint on the Hubble constant is relaxed to H_0=72.1^{+3.2}_{-2.3} km/s/Mpc, solving the tension with the Hubble Space Telescope value. We show that a combined Planck+HST analysis provides significant evidence for coupled dark energy finding a non-zero value for the coupling parameter xi, with -0.90< xi <-0.22 at 95% c.l.. We also consider the combined constraints from the Planck data plus the BAO measurements of the 6dF Galaxy Survey, the Sloan Digital Sky Survey and the Baron Oscillation Spectroscopic Survey.



قيم البحث

اقرأ أيضاً

299 - Jun-Qing Xia 2013
Recently, the Planck collaboration has released the first cosmological papers providing the high resolution, full sky, maps of the cosmic microwave background (CMB) temperature anisotropies. It is crucial to understand that whether the accelerating e xpansion of our universe at present is driven by an unknown energy component (Dark Energy) or a modification to general relativity (Modified Gravity). In this paper we study the coupled dark energy models, in which the quintessence scalar field nontrivially couples to the cold dark matter, with the strength parameter of interaction $beta$. Using the Planck data alone, we obtain that the strength of interaction between dark sectors is constrained as $beta < 0.102$ at $95%$ confidence level, which is tighter than that from the WMAP9 data alone. Combining the Planck data with other probes, like the Baryon Acoustic Oscillation (BAO), Type-Ia supernovae ``Union2.1 compilation and the CMB lensing data from Planck measurement, we find the tight constraint on the strength of interaction $beta < 0.052$ ($95%$ C.L.). Interestingly, we also find a non-zero coupling $beta = 0.078 pm 0.022$ ($68%$ C.L.) when we use the Planck, the ``SNLS supernovae samples, and the prior on the Hubble constant from the Hubble Space Telescope (HST) together. This evidence for the coupled dark energy models mainly comes from a tension between constraints on the Hubble constant from the Planck measurement and the local direct $H_0$ probes from HST.
The Planck collaboration has recently published maps of the Cosmic Microwave Background radiation with the highest precision. In the standard flat $Lambda$CDM framework, Planck data show that the Hubble constant $H_0$ is in tension with that measured by the several direct probes on $H_0$. In this paper, we perform a global analysis from the current observational data in the general dark energy models and find that resolving this tension on $H_0$ requires the dark energy model with its equation of state (EoS) $w eq-1$. Firstly, assuming the $w$ to be a constant, the Planck data favor $w < -1$ at about $2,sigma$ confidence level when combining with the supernovae SNLS compilation. And consequently the value derived on $H_0$, $H_0=71.3pm2.0$ ${rm km,s^{-1},Mpc^{-1}}$ (68% C.L.), is consistent with that from direct $H_0$ probes. We then investigate the dark energy model with a time-evolving $w$, and obtain the 68% C.L. constraints $w_0=-0.81pm0.19$ and $w_a=-1.9pm1.1$ from the Planck data and the SNLS compilation. Current data still slightly favor the Quintom dark energy scenario with EoS across the cosmological constant boundary $wequiv-1$.
We determine constraints on spatially-flat tilted dynamical dark energy XCDM and $phi$CDM inflation models by analyzing Planck 2015 cosmic microwave background (CMB) anisotropy data and baryon acoustic oscillation (BAO) distance measurements. XCDM is a simple and widely used but physically inconsistent parameterization of dynamical dark energy, while the $phi$CDM model is a physically consistent one in which a scalar field $phi$ with an inverse power-law potential energy density powers the currently accelerating cosmological expansion. Both these models have one additional parameter compared to standard $Lambda$CDM and both better fit the TT + lowP + lensing + BAO data than does the standard tilted flat-$Lambda$CDM model, with $Delta chi^2 = -1.26 (-1.60)$ for the XCDM ($phi$CDM) model relative to the $Lambda$CDM model. While this is a 1.1$sigma$ (1.3$sigma$) improvement over standard $Lambda$CDM and so not significant, dynamical dark energy models cannot be ruled out. In addition, both dynamical dark energy models reduce the tension between the Planck 2015 CMB anisotropy and the weak lensing $sigma_8$ constraints.
We show that the new precise measurements of Cosmic Microwave Background (CMB) temperature and polarization anisotropies made by the Planck satellite significantly improves previous constraints on the cosmic gravitational waves background (CGWB) at f requencies $f>10^{-15}$ Hz. On scales smaller than the horizon at the time of decoupling, primordial gravitational waves contribute to the total radiation content of the Universe. Considering adiabatic perturbations, CGWB affects temperature and polarization CMB power spectra and matter power spectrum in a manner identical to relativistic particles. Considering the latest Planck results we constrain the CGWB energy density to $Omega_{rm gw} h^2 <1.7times 10^{-6} $ at 95% CL. Combining CMB power spectra with lensing, BAO and primordial Deuterium abundance observations, we obtain $Omega_{rm gw} h^2 <1.2times 10^{-6} $ at 95% CL, improving previous Planck bounds by a factor 3 and the recent direct upper limit from the LIGO and VIRGO experiments a factor 2. A combined analysis of future satellite missions as COrE and EUCLID could improve current bound by more than an order of magnitude.
206 - J. Angle , E. Aprile , F. Arneodo 2009
It has been suggested that dark matter particles which scatter inelastically from detector target nuclei could explain the apparent incompatibility of the DAMA modulation signal (interpreted as evidence for particle dark matter) with the null results from CDMS-II and XENON10. Among the predictions of inelastically interacting dark matter are a suppression of low-energy events, and a population of nuclear recoil events at higher nuclear recoil equivalent energies. This is in stark contrast to the well-known expectation of a falling exponential spectrum for the case of elastic interactions. We present a new analysis of XENON10 dark matter search data extending to E$_{nr}=75$ keV nuclear recoil equivalent energy. Our results exclude a significant region of previously allowed parameter space in the model of inelastically interacting dark matter. In particular, it is found that dark matter particle masses $m_{chi}gtrsim150$ GeV are disfavored.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا