ﻻ يوجد ملخص باللغة العربية
Observations of accretion disks around young brown dwarfs have led to the speculation that they may form planetary systems similar to normal stars. While there have been several detections of planetary-mass objects around brown dwarfs (2MASS 1207-3932 and 2MASS 0441-2301), these companions have relatively large mass ratios and projected separations, suggesting that they formed in a manner analogous to stellar binaries. We present the discovery of a planetary-mass object orbiting a field brown dwarf via gravitational microlensing, OGLE-2012-BLG-0358Lb. The system is a low secondary/primary mass ratio (0.080 +- 0.001), relatively tightly-separated (~0.87 AU) binary composed of a planetary-mass object with 1.9 +- 0.2 Jupiter masses orbiting a brown dwarf with a mass 0.022 M_Sun. The relatively small mass ratio and separation suggest that the companion may have formed in a protoplanetary disk around the brown dwarf host, in a manner analogous to planets.
Although many models have been proposed, the physical mechanisms responsible for the formation of low-mass brown dwarfs are poorly understood. The multiplicity properties and minimum mass of the brown-dwarf mass function provide critical empirical di
We report the discovery and the analysis of the short timescale binary-lens microlensing event, MOA-2015-BLG-337. The lens system could be a planetary system with a very low mass host, around the brown dwarf/planetary mass boundary, or a brown dwarf
We conducted a multi-wavelength, multi-instrument observational characterisation of the candidate free-floating planet CFBDSIR~J214947.2-040308.9, a late T-dwarf with possible low-gravity features, in order to constrain its physical properties. We an
We report the discovery of a $Spitzer$ microlensing planet OGLE-2018-BLG-0596Lb, with preferred planet-host mass ratio $q sim 2times10^{-4}$. The planetary signal, which is characterized by a short $(sim 1~{rm day})$ bump on the rising side of the le
We report the analysis of planetary microlensing event OGLE-2018-BLG-1185, which was observed by a large number of ground-based telescopes and by the $Spitzer$ Space Telescope. The ground-based light curve indicates a low planet-host star mass ratio