ﻻ يوجد ملخص باللغة العربية
We study the reverse triangle inequalities for suprema of logarithmic potentials on compact sets of the plane. This research is motivated by the inequalities for products of supremum norms of polynomials. We find sharp additive constants in the inequalities for potentials, and give applications of our results to the generalized polynomials. We also obtain sharp inequalities for products of norms of the weighted polynomials $w^nP_n, deg(P_n)le n,$ and for sums of suprema of potentials with external fields. An important part of our work in the weighted case is a Riesz decomposition for the weighted farthest-point distance function.
We study reverse triangle inequalities for Riesz potentials and their connection with polarization. This work generalizes inequalities for sup norms of products of polynomials, and reverse triangle inequalities for logarithmic potentials. The main to
The Alexandrov--Fenchel inequality bounds from below the square of the mixed volume $V(K_1,K_2,K_3,ldots,K_n)$ of convex bodies $K_1,ldots,K_n$ in $mathbb{R}^n$ by the product of the mixed volumes $V(K_1,K_1,K_3,ldots,K_n)$ and $V(K_2,K_2,K_3,ldots,K
New upper bounds on the relative entropy are derived as a function of the total variation distance. One bound refines an inequality by Verd{u} for general probability measures. A second bound improves the tightness of an inequality by Csisz{a}r and T
This paper is devoted to a new family of reverse Hardy-Littlewood-Sobolev inequalities which involve a power law kernel with positive exponent. We investigate the range of the admissible parameters and characterize the optimal functions. A striking o
In this expository article we introduce a diagrammatic scheme to represent reverse classes of weights and some of their properties.