ﻻ يوجد ملخص باللغة العربية
New upper bounds on the relative entropy are derived as a function of the total variation distance. One bound refines an inequality by Verd{u} for general probability measures. A second bound improves the tightness of an inequality by Csisz{a}r and Talata for arbitrary probability measures that are defined on a common finite set. The latter result is further extended, for probability measures on a finite set, leading to an upper bound on the R{e}nyi divergence of an arbitrary non-negative order (including $infty$) as a function of the total variation distance. Another lower bound by Verd{u} on the total variation distance, expressed in terms of the distribution of the relative information, is tightened and it is attained under some conditions. The effect of these improvements is exemplified.
This paper gives improved R{e}nyi entropy power inequalities (R-EPIs). Consider a sum $S_n = sum_{k=1}^n X_k$ of $n$ independent continuous random vectors taking values on $mathbb{R}^d$, and let $alpha in [1, infty]$. An R-EPI provides a lower bound
In part I of this two-part work, certain minimization problems based on a parametric family of relative entropies (denoted $mathscr{I}_{alpha}$) were studied. Such minimizers were called forward $mathscr{I}_{alpha}$-projections. Here, a complementary
This note contributes to the understanding of generalized entropy power inequalities. Our main goal is to construct a counter-example regarding monotonicity and entropy comparison of weighted sums of independent identically distributed log-concave ra
This paper is focused on $f$-divergences, consisting of three main contributions. The first one introduces integral representations of a general $f$-divergence by means of the relative information spectrum. The second part provides a new approach for
This paper develops systematic approaches to obtain $f$-divergence inequalities, dealing with pairs of probability measures defined on arbitrary alphabets. Functional domination is one such approach, where special emphasis is placed on finding the be