ترغب بنشر مسار تعليمي؟ اضغط هنا

Inverse Bernstein inequalities and min-max-min problems on the unit circle

426   0   0.0 ( 0 )
 نشر من قبل Douglas Hardin
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We give a short and elementary proof of an inverse Bernstein-type inequality found by S. Khrushchev for the derivative of a polynomial having all its zeros on the unit circle. The inequality is used to show that equally-spaced points solve a min-max-min problem for the logarithmic potential of such polynomials. Using techniques recently developed for polarization (Chebyshev-type) problems, we show that this optimality also holds for a large class of potentials, including the Riesz potentials $1/r^s$ with $s>0.$



قيم البحث

اقرأ أيضاً

498 - Gus Gutoski , Xiaodi Wu 2010
This paper presents an efficient parallel approximation scheme for a new class of min-max problems. The algorithm is derived from the matrix multiplicative weights update method and can be used to find near-optimal strategies for competitive two-part y classical or quantum interactions in which a referee exchanges any number of messages with one party followed by any number of additional messages with the other. It considerably extends the class of interactions which admit parallel solutions, demonstrating for the first time the existence of a parallel algorithm for an interaction in which one party reacts adaptively to the other. As a consequence, we prove that several competing-provers complexity classes collapse to PSPACE such as QRG(2), SQG and two new classes called DIP and DQIP. A special case of our result is a parallel approximation scheme for a specific class of semidefinite programs whose feasible region consists of lists of semidefinite matrices that satisfy a transcript-like consistency condition. Applied to this special case, our algorithm yields a direct polynomial-space simulation of multi-message quantum interactive proofs resulting in a first-principles proof of QIP=PSPACE.
In the ${-1,0,1}$-APSP problem the goal is to compute all-pairs shortest paths (APSP) on a directed graph whose edge weights are all from ${-1,0,1}$. In the (min,max)-product problem the input is two $ntimes n$ matrices $A$ and $B$, and the goal is t o output the (min,max)-product of $A$ and $B$. This paper provides a new algorithm for the ${-1,0,1}$-APSP problem via a simple reduction to the target-(min,max)-product problem where the input is three $ntimes n$ matrices $A,B$, and $T$, and the goal is to output a Boolean $ntimes n$ matrix $C$ such that the $(i,j)$ entry of $C$ is 1 if and only if the $(i,j)$ entry of the (min,max)-product of $A$ and $B$ is exactly the $(i,j)$ entry of the target matrix $T$. If (min,max)-product can be solved in $T_{MM}(n) = Omega(n^2)$ time then it is straightforward to solve target-(min,max)-product in $O(T_{MM}(n))$ time. Thus, given the recent result of Bringmann, Kunnemann, and Wegrzycki [STOC 2019], the ${-1,0,1}$-APSP problem can be solved in the same time needed for solving approximate APSP on graphs with positive weights. Moreover, we design a simple algorithm for target-(min,max)-product when the inputs are restricted to the family of inputs generated by our reduction. Using fast rectangular matrix multiplication, the new algorithm is faster than the current best known algorithm for (min,max)-product.
185 - Edouard Pauwels 2021
We study the ridge method for min-max problems, and investigate its convergence without any convexity, differentiability or qualification assumption. The central issue is to determine whether the parametric optimality formula provides a conservative field, a notion of generalized derivative well suited for optimization. The answer to this question is positive in a semi-algebraic, and more generally definable, context. The proof involves a new characterization of definable conservative fields which is of independent interest. As a consequence, the ridge method applied to definable objectives is proved to have a minimizing behavior and to converge to a set of equilibria which satisfy an optimality condition. Definability is key to our proof: we show that for a more general class of nonsmooth functions, conservativity of the parametric optimality formula may fail, resulting in an absurd behavior of the ridge method.
We consider a max-min variation of the classical problem of maximizing a linear function over the base of a polymatroid. In our problem we assume that the vector of coefficients of the linear function is not a known parameter of the problem but is so me vertex of a simplex, and we maximize the linear function in the worst case. Equivalently, we view the problem as a zero-sum game between a maximizing player whose mixed strategy set is the base of the polymatroid and a minimizing player whose mixed strategy set is a simplex. We show how to efficiently obtain optimal strategies for both players and an expression for the value of the game. Furthermore, we give a characterization of the set of optimal strategies for the minimizing player. We consider fou
In this paper we present a new data structure for double ended priority queue, called min-max fine heap, which combines the techniques used in fine heap and traditional min-max heap. The standard operations on this proposed structure are also present ed, and their analysis indicates that the new structure outperforms the traditional one.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا