ﻻ يوجد ملخص باللغة العربية
Wigner function is a quasi-distribution that provides a representation of the state of a quantum mechanical system in the phase space of position and momentum. In this paper we find a relation between Wigner function and appropriate measurements involving the system position and momentum which generalize the von Neumann model of measurement. We introduce two probes coupled successively in time to projectors associated with the system position and momentum. We show that one can relate Wigner function to Kirkwood joint quasi-distribution of position and momentum, the latter, in turn, being a particular case of successive measurements. We first consider the case of a quantum mechanical system described in a continuous Hilbert space, and then turn to the case of a discrete, finite-dimensional Hilbert space.
Heisenbergs uncertainty principle has recently led to general measurement uncertainty relations for quantum systems: incompatible observables can be measured jointly or in sequence only with some unavoidable approximation, which can be quantified in
We report a direct measurement of the Wigner function characterizing the quantum state of a light mode. The experimental scheme is based on the representation of the Wigner function as an expectation value of a displaced photon number parity operator
We consider a single copy of a quantum particle moving in a potential and show that it is possible to monitor its complete wave function by only continuously measuring its position. While we assume that the potential is known, no information is avail
The Hong-Ou-Mandel (HOM) experiment was a benchmark in quantum optics, evidencing the quantum nature of the photon. In order to go deeper, and obtain the complete information about the quantum state of a system, for instance, composed by photons, the
We introduce a method of quantum tomography for a continuous variable system in position and momentum space. We consider a single two-level probe interacting with a quantum harmonic oscillator by means of a class of Hamiltonians, linear in position a