ﻻ يوجد ملخص باللغة العربية
We report the successful synthesis of single-crystals of the layered iridate, (Na$_{1-x}$Li$_{x}$)$_2$IrO$_3$, $0leq x leq 0.9$, and a thorough study of its structural, magnetic, thermal and transport properties. The new compound allows a controlled interpolation between Na$_2$IrO$_3$ and Li$_2$IrO$_3$, while maintaing the novel quantum magnetism of the honeycomb Ir$^{4+}$ planes. The measured phase diagram demonstrates a dramatic suppression of the Neel temperature, $T_N$, at intermediate $x$ suggesting that the magnetic order in Na$_2$IrO$_3$ and Li$_2$IrO$_3$ are distinct, and that at $xapprox 0.7$, the compound is close to a magnetically disordered phase that has been sought after in Na$_2$IrO$_3$ and Li$_2$IrO$_3$. By analyzing our magnetic data with a simple theoretical model we also show that the trigonal splitting, on the Ir$^{4+}$ ions changes sign from Na$_2$IrO$_3$ and Li$_2$IrO$_3$, and the honeycomb iridates are in the strong spin-orbit coupling regime, controlled by $jeff=1/2$ moments.
A family of insulating iridates with chemical formula Li$_2$IrO$_3$ has recently been discovered, featuring three distinct crystal structures $alpha,beta,gamma$ (honeycomb, hyperhoneycomb, stripyhoneycomb). Measurements on the three-dimensional polyt
In the quest for realizations of quantum spin liquids, the exploration of Kitaev materials - spin-orbit entangled Mott insulators with strong bond-directional exchanges - has taken center stage. However, in these materials the local spin-orbital j=1/
Single-crystal x-ray diffraction studies with synchrotron radiation on the honeycomb iridate $alpha$-Li$_{2}$IrO$_{3}$ reveal a pressure-induced structural phase transition with symmetry lowering from monoclinic to triclinic at a critical pressure of
We investigate the doping effects of magnetic and nonmagnetic impurities injected to the honeycomb iridate sample of Na2IrO3 . Both the doping result in changing the ordering temperature as well as the Curie-Weiss temperature of the parent sample as
Investigation of elementary excitations has advanced our understanding of many-body physics governing most physical properties of matter. Recently spin-orbit excitons have drawn much attention, whose condensates near phase transitions exhibit Higgs m