ﻻ يوجد ملخص باللغة العربية
We study the network of Type-I cosmic strings using the field-theoretic numerical simulations in the Abelian-Higgs model. For Type-I strings, the gauge field plays an important role, and thus we find that the correlation length of the strings is strongly dependent upon the parameter beta, the ratio between the self-coupling constant of the scalar field and the gauge coupling constant, namely, beta=lambda/2e^2. In particular, if we take the cosmic expansion into account, the network becomes densest in the comoving box for a specific value of beta for beta<1.
In this paper we present the results of numerical simulations intended to study the behavior of non-Abelian cosmic strings networks. In particular we are interested in discussing the variations in the asymptotic behavior of the system as we variate t
Recent work by Jenkins and Sakellariadou claims that cusps on cosmic strings lead to black hole production. To derive this conclusion they use the hoop conjecture in the rest frame of the string loop, rather than in the rest frame of the proposed bla
We determine the distribution of cosmic string loops directly from simulations, rather than determining the loop production function and inferring the loop distribution from that. For a wide range of loop lengths, the results agree well with a power
We consider the femto-lensing due to a cosmic string. If a cosmic string with the deficit angle $Deltasim 100$ [femto-arcsec] $sim10^{-18}$ [rad] exists around the line of sight to a gamma-ray burst, we may observe characteristic interference pattern
A network of cosmic strings would lead to gravitational waves which may be detected by pulsar timing or future interferometers. The details of the gravitational wave signal depend on the distribution of cosmic string loops, which are produced by inte