ﻻ يوجد ملخص باللغة العربية
We measure the transmission phase of a quantum point contact (QPC) at a low carrier density in which electron interaction is expected to play an important role and anomalous behaviors are observed. In the first conductance plateau, the transmission phase shifts monotonically as the carrier density is decreased by the gate voltage. When the conductance starts to decrease, in what is often called the 0.7 regime, the phase exhibits an anomalous increase compared with the noninteracting model. The observation implies an increase in the wave vector as the carrier density is decreased, suggesting a transition to a spin-incoherent Luttinger liquid.
A Quantum Point Contact (QPC) causes a one-dimensional constriction on the spatial potential landscape of a two-dimensional electron system. By tuning the voltage applied on a QPC at low temperatures the resulting regular step-like electron conductan
The spin degeneracy of the lowest subband that carries one-dimensional electron transport in quantum point contacts appears to be spontaneously lifted in zero magnetic field due to a phenomenon that is known as the 0.7 anomaly. We measured this energ
Quantum point contacts implemented in p-type GaAs/AlGaAs heterostructures are investigated by low-temperature electrical conductance spectroscopy measurements. Besides one-dimensional conductance quantization in units of $2e^{2}/h$ a pronounced extra
Transmission through a quantum point contact (QPC) in the quantum Hall regime usually exhibits multiple resonances as a function of gate voltage and high nonlinearity in bias. Such behavior is unpredictable and changes sample by sample. Here, we repo
Electron charge transport through a quantum point contact (QPC) driven by an asymmetric spin bias is studied. A large charge current is induced when the transmission coefficient of the QPC jumps from one integer plateau to the next. Furthermore, for