ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for localization and 0.7 anomaly in hole quantum point contacts

132   0   0.0 ( 0 )
 نشر من قبل Mikl\\'os Csontos Dr.
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum point contacts implemented in p-type GaAs/AlGaAs heterostructures are investigated by low-temperature electrical conductance spectroscopy measurements. Besides one-dimensional conductance quantization in units of $2e^{2}/h$ a pronounced extra plateau is found at about $0.7(2e^{2}/h)$ which possesses the characteristic properties of the so-called 0.7 anomaly known from experiments with n-type samples. The evolution of the 0.7 plateau in high perpendicular magnetic field reveals the existence of a quasi-localized state and supports the explanation of the 0.7 anomaly based on self-consistent charge localization. These observations are robust when lateral electrical fields are applied which shift the relative position of the electron wavefunction in the quantum point contact, testifying to the intrinsic nature of the underlying physics.



قيم البحث

اقرأ أيضاً

105 - E.J. Koop , A.I. Lerescu , J. Liu 2007
The spin degeneracy of the lowest subband that carries one-dimensional electron transport in quantum point contacts appears to be spontaneously lifted in zero magnetic field due to a phenomenon that is known as the 0.7 anomaly. We measured this energ y splitting, and studied how it evolves into a splitting that is the sum of the Zeeman effect and a field-independent exchange contribution when applying a magnetic field. While this exchange contribution shows sample-to-sample fluctuations, it is for all QPCs correlated with the zero-field splitting of the 0.7 anomaly. This provides evidence that the splitting of the 0.7 anomaly is dominated by this field-independent exchange splitting.
90 - B. Brun , F. Martins , S. Faniel 2016
The Kondo effect is the many-body screening of a local spin by a cloud of electrons at very low temperature. It has been proposed as an explanation of the zero-bias anomaly in quantum point contacts where interactions drive a spontaneous charge local ization. However, the Kondo origin of this anomaly remains under debate, and additional experimental evidence is necessary. Here we report on the first phase-sensitive measurement of the zero-bias anomaly in quantum point contacts using a scanning gate microscope to create an electronic interferometer. We observe an abrupt shift of the interference fringes by half a period in the bias range of the zero-bias anomaly, a behavior which cannot be reproduced by single-particle models. We instead relate it to the phase shift experienced by electrons scattering off a Kondo system. Our experiment therefore provides new evidence of this many-body effect in quantum point contacts.
110 - E.J. Koop , A.I. Lerescu , J. Liu 2007
The conductance of a quantum point contact (QPC) shows several features that result from many-body electron interactions. The spin degeneracy in zero magnetic field appears to be spontaneously lifted due to the so-called 0.7 anomaly. Further, the g-f actor for electrons in the QPC is enhanced, and a zero-bias peak in the conductance points to similarities with transport through a Kondo impurity. We report here how these many-body effects depend on QPC geometry. We find a clear relation between the enhanced g-factor and the subband spacing in our QPCs, and can relate this to the device geometry with electrostatic modeling of the QPC potential. We also measured the zero-field energy splitting related to the 0.7 anomaly, and studied how it evolves into a splitting that is the sum of the Zeeman effect and a field-independent exchange contribution when applying a magnetic field. While this exchange contribution shows sample-to-sample fluctuations and no clear dependence on QPC geometry, it is for all QPCs correlated with the zero-field splitting of the 0.7 anomaly. This provides evidence that the splitting of the 0.7 anomaly is dominated by this field-independent exchange splitting. Signatures of the Kondo effect also show no regular dependence on QPC geometry, but are possibly correlated with splitting of the 0.7 anomaly.
253 - B. Brun , F. Martins , S. Faniel 2013
Quantum point contacts exhibit mysterious conductance anomalies in addition to well known conductance plateaus at multiples of 2e^2/h. These 0.7 and zero-bias anomalies have been intensively studied, but their microscopic origin in terms of many-body effects is still highly debated. Here we use the charged tip of a scanning gate microscope to tune in situ the electrostatic potential of the point contact. While sweeping the tip distance, we observe repetitive splittings of the zero-bias anomaly, correlated with simultaneous appearances of the 0.7 anomaly. We interpret this behaviour in terms of alternating equilibrium and non-equilibrium Kondo screenings of different spin states localized in the channel. These alternating Kondo effects point towards the presence of a Wigner crystal containing several charges with different parities. Indeed, simulations show that the electron density in the channel is low enough to reach one-dimensional Wigner crystallization over a size controlled by the tip position.
Linear and non-linear transport properties through an atomic-size point contact based on oxides two-dimensional electron gas is examined using the tight-binding method and the $mathbf{kcdot p}$ approach. The ballistic transport is analyzed in contact s realized at the (001) interface between band insulators $LaAlO_3$ and $SrTiO_3$ by using the Landauer-Buttiker method for many sub-bands derived from three Ti 3d orbitals ($d_{yz}$, $d_{zx}$ and $d_{xy}$) in the presence of an out-of-plane magnetic field. We focus especially on the role played by the atomic spin-orbit coupling and the inversion symmetry breaking term pointing out three transport regimes: the first, at low energies, involving the first $d_{xy}$-like sub-bands, where the conductance quantization is robust; a second one, at intermediate energies, entailing further $d_{xy}$-like sub-bands, where the sub-band splitting induced by the magnetic field is quenched; the third one, where the mixing between light $d_{xy}$-like, heavy $d_{yz}$-like and $d_{zx}$-like sub-bands is so strong that the conductance plateaus turn out to be very narrow. Very good agreement is found with recent experiments exploring the transport properties at low energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا