ﻻ يوجد ملخص باللغة العربية
We investigate the strain-induced coupling between a nitrogen-vacancy impurity and a resonant vibrational mode of a diamond nanoresonator. We show that under near-resonant laser excitation of the electronic states of the impurity, this coupling can modify the state of the resonator and either cool the resonator close to the vibrational ground state or drive it into a large amplitude coherent state. We derive a semi-classical model to describe both effects and evaluate the stationary state of the resonator mode under various driving conditions. In particular, we find that by exploiting resonant single and multi-phonon transitions between near-degenerate electronic states, the coupling to high-frequency vibrational modes can be significantly enhanced and dominate over the intrinsic mechanical dissipation. Our results show that a single nitrogen-vacancy impurity can provide a versatile tool to manipulate and probe individual phonon modes in nanoscale diamond structures.
We use magnetic-field-dependent features in the photoluminescence of negatively charged nitrogen-vacancy centers to measure magnetic fields without the use of microwaves. In particular, we present a magnetometer based on the level anti-crossing in th
A study of the photophysical properties of nitrogen-vacancy (NV) color centers in diamond nanocrystals of size of 50~nm or below is carried out by means of second-order time-intensity photon correlation and cross-correlation measurements as a functio
The nitrogen-vacancy (NV) color center in diamond is an atom-like system in the solid-state which specific spin properties can be efficiently used as a sensitive magnetic sensor. An external magnetic field induces Zeeman shifts of the NV center level
The charge degree of freedom in solid-state defects fundamentally underpins the electronic spin degree of freedom, a workhorse of quantum technologies. Here we study charge state properties of individual near-surface nitrogen-vacancy (NV) centers in
We study a setup where a single negatively-charged silicon-vacancy center in diamond is magnetically coupled to a low-frequency mechanical bending mode and via strain to the high-frequency phonon continuum of a semi-clamped diamond beam. We show that