ترغب بنشر مسار تعليمي؟ اضغط هنا

The Digital Evolution of Occupy Wall Street

165   0   0.0 ( 0 )
 نشر من قبل Emilio Ferrara
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine the temporal evolution of digital communication activity relating to the American anti-capitalist movement Occupy Wall Street. Using a high-volume sample from the microblogging site Twitter, we investigate changes in Occupy participant engagement, interests, and social connectivity over a fifteen month period starting three months prior to the movements first protest action. The results of this analysis indicate that, on Twitter, the Occupy movement tended to elicit participation from a set of highly interconnected users with pre-existing interests in domestic politics and foreign social movements. These users, while highly vocal in the months immediately following the birth of the movement, appear to have lost interest in Occupy related communication over the remainder of the study period.



قيم البحث

اقرأ أيضاً

153 - Scott A. Hale , Helen Margetts , 2013
Now that so much of collective action takes place online, web-generated data can further understanding of the mechanics of Internet-based mobilisation. This trace data offers social science researchers the potential for new forms of analysis, using r eal-time transactional data based on entire populations, rather than sample-based surveys of what people think they did or might do. This paper uses a `big data approach to track the growth of over 8,000 petitions to the UK Government on the No. 10 Downing Street website for two years, analysing the rate of growth per day and testing the hypothesis that the distribution of daily change will be leptokurtic (rather than normal) as previous research on agenda setting would suggest. This hypothesis is confirmed, suggesting that Internet-based mobilisation is characterized by tipping points (or punctuated equilibria) and explaining some of the volatility in online collective action. We find also that most successful petitions grow quickly and that the number of signatures a petition receives on its first day is a significant factor in explaining the overall number of signatures a petition receives during its lifetime. These findings have implications for the strategies of those initiating petitions and the design of web sites with the aim of maximising citizen engagement with policy issues.
In times marked by political turbulence and uncertainty, as well as increasing divisiveness and hyperpartisanship, Governments need to use every tool at their disposal to understand and respond to the concerns of their citizens. We study issues raise d by the UK public to the Government during 2015-2017 (surrounding the UK EU-membership referendum), mining public opinion from a dataset of 10,950 petitions (representing 30.5 million signatures). We extract the main issues with a ground-up natural language processing (NLP) method, latent Dirichlet allocation (LDA). We then investigate their temporal dynamics and geographic features. We show that whilst the popularity of some issues is stable across the two years, others are highly influenced by external events, such as the referendum in June 2016. We also study the relationship between petitions issues and where their signatories are geographically located. We show that some issues receive support from across the whole country but others are far more local. We then identify six distinct clusters of constituencies based on the issues which constituents sign. Finally, we validate our approach by comparing the petitions issues with the top issues reported in Ipsos MORI survey data. These results show the huge power of computationally analyzing petitions to understand not only what issues citizens are concerned about but also when and from where.
The quest for historically impactful science and technology provides invaluable insight into the innovation dynamics of human society, yet many studies are limited to qualitative and small-scale approaches. Here, we investigate scientific evolution t hrough systematic analysis of a massive corpus of digitized English texts between 1800 and 2008. Our analysis reveals great predictability for long-prevailing scientific concepts based on the levels of their prior usage. Interestingly, once a threshold of early adoption rates is passed even slightly, scientific concepts can exhibit sudden leaps in their eventual lifetimes. We developed a mechanistic model to account for such results, indicating that slowly-but-commonly adopted science and technology surprisingly tend to have higher innate strength than fast-and-commonly adopted ones. The model prediction for disciplines other than science was also well verified. Our approach sheds light on unbiased and quantitative analysis of scientific evolution in society, and may provide a useful basis for policy-making.
Background: Zipfs law and Heaps law are two representatives of the scaling concepts, which play a significant role in the study of complexity science. The coexistence of the Zipfs law and the Heaps law motivates different understandings on the depend ence between these two scalings, which is still hardly been clarified. Methodology/Principal Findings: In this article, we observe an evolution process of the scalings: the Zipfs law and the Heaps law are naturally shaped to coexist at the initial time, while the crossover comes with the emergence of their inconsistency at the larger time before reaching a stable state, where the Heaps law still exists with the disappearance of strict Zipfs law. Such findings are illustrated with a scenario of large-scale spatial epidemic spreading, and the empirical results of pandemic disease support a universal analysis of the relation between the two laws regardless of the biological details of disease. Employing the United States(U.S.) domestic air transportation and demographic data to construct a metapopulation model for simulating the pandemic spread at the U.S. country level, we uncover that the broad heterogeneity of the infrastructure plays a key role in the evolution of scaling emergence. Conclusions/Significance: The analyses of large-scale spatial epidemic spreading help understand the temporal evolution of scalings, indicating the coexistence of the Zipfs law and the Heaps law depends on the collective dynamics of epidemic processes, and the heterogeneity of epidemic spread indicates the significance of performing targeted containment strategies at the early time of a pandemic disease.
Disruptions resulting from an epidemic might often appear to amount to chaos but, in reality, can be understood in a systematic way through the lens of epidemic psychology. According to Philip Strong, the founder of the sociological study of epidemic infectious diseases, not only is an epidemic biological; there is also the potential for three psycho-social epidemics: of fear, moralization, and action. This work empirically tests Strongs model at scale by studying the use of language of 122M tweets related to the COVID-19 pandemic posted in the U.S. during the whole year of 2020. On Twitter, we identified three distinct phases. Each of them is characterized by different regimes of the three psycho-social epidemics. In the refusal phase, users refused to accept reality despite the increasing number of deaths in other countries. In the anger phase (started after the announcement of the first death in the country), users fear translated into anger about the looming feeling that things were about to change. Finally, in the acceptance phase, which began after the authorities imposed physical-distancing measures, users settled into a new normal for their daily activities. Overall, refusal of accepting reality gradually died off as the year went on, while acceptance increasingly took hold. During 2020, as cases surged in waves, so did anger, re-emerging cyclically at each wave. Our real-time operationalization of Strongs model is designed in a way that makes it possible to embed epidemic psychology into real-time models (e.g., epidemiological and mobility models).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا