ﻻ يوجد ملخص باللغة العربية
Background: Zipfs law and Heaps law are two representatives of the scaling concepts, which play a significant role in the study of complexity science. The coexistence of the Zipfs law and the Heaps law motivates different understandings on the dependence between these two scalings, which is still hardly been clarified. Methodology/Principal Findings: In this article, we observe an evolution process of the scalings: the Zipfs law and the Heaps law are naturally shaped to coexist at the initial time, while the crossover comes with the emergence of their inconsistency at the larger time before reaching a stable state, where the Heaps law still exists with the disappearance of strict Zipfs law. Such findings are illustrated with a scenario of large-scale spatial epidemic spreading, and the empirical results of pandemic disease support a universal analysis of the relation between the two laws regardless of the biological details of disease. Employing the United States(U.S.) domestic air transportation and demographic data to construct a metapopulation model for simulating the pandemic spread at the U.S. country level, we uncover that the broad heterogeneity of the infrastructure plays a key role in the evolution of scaling emergence. Conclusions/Significance: The analyses of large-scale spatial epidemic spreading help understand the temporal evolution of scalings, indicating the coexistence of the Zipfs law and the Heaps law depends on the collective dynamics of epidemic processes, and the heterogeneity of epidemic spread indicates the significance of performing targeted containment strategies at the early time of a pandemic disease.
Improved mobility not only contributes to more intensive human activities but also facilitates the spread of communicable disease, thus constituting a major threat to billions of urban commuters. In this study, we present a multi-city investigation o
Dynamic networks exhibit temporal patterns that vary across different time scales, all of which can potentially affect processes that take place on the network. However, most data-driven approaches used to model time-varying networks attempt to captu
The spread of an infection on a real-world social network is determined by the interplay of two processes: the dynamics of the network, whose structure changes over time according to the encounters between individuals, and the dynamics on the network
In spite of the extensive previous efforts on traffic dynamics and epidemic spreading in complex networks, the problem of traffic-driven epidemic spreading on {em correlated} networks has not been addressed. Interestingly, we find that the epidemic t
With great theoretical and practical significance, identifying the node spreading influence of complex network is one of the most promising domains. So far, various topology-based centrality measures have been proposed to identify the node spreading